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Summary

The report aims at developing the physical study and the modeling techniques that define
the magneto-mechanical properties. First, a state of the art is presented in Chapter 1 for the
different magnetic and magneto-mechanical modeling techniques adopted by researchers.
Then, the magnetic modeling performed in Chapter 2 is then presented, starting from the
microscopic study at the domains scales, where the magnetic propeties are defined and then
homogenized at the mesoscopic scale. The macroscopic scale is then presented, where the
magnetic model is conceived in a way to be adapted to the experimental setup, using the
magnetic diffusion model.
Similarly, magneto-mechanical modeling is developed in Chapter 3 by analyzing the micro-
scopic behavior, then the mesoscopic homogenized properties and finally the macroscopic
mechanical model adapted with the measurements and based on a dynamic vibrational model.
The magneto-mechanical modeling also includes the magnetic modeling performed in the pre-
vious chapter, specially the magnetic diffusion phenomenon. The magneto-mechanical mod-
eling constitutes a basis for the vibration and noise analysis.
Finally, the different models, from the microscopic to the macroscopic scale are investigated in
order to study of the laser treatment on the magnetic and the magneto-mechanical behavior,
and eventuelly the losses and the vibrations. For this purpose, a presentatioon of the laser
treatment technology and its theoretical effect on the behavior is presented in Chapter 4.
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Chapter 1

State of the Art

1.1 Introduction

The main challenge of the project is to improve the magnetic and the magneto-mechanical
performances of electrical steels inside electrical and magnetic components. This includes
the enhancement of the permeability, the decrease of iron losses and reduction of vibra-
tion and noise. Therefore, understanding the static and the dynamic magnetic and magneto-
mechanical behavior at different scales is a must. A litterature review of the modeling tech-
niques of the magnetization and the induced magneto-mechanical behavior at different scales
is presented in this chapter. Based on previous researches, specific models are selected and
developed in order to describe the coupled magneto-mechanical behavior in the magnetic
structure, and then to understand the role played by laser treatments on this behavior.
The microscopic phenomena related to the domain structure from energetic point of view are
first presented. Then the scale transition is described between the microscopic to the meso-
scopic scale. The phenomenological models that reveal the global apparent behavior, first
from a purely magnetic point of view, then from the magneto-mechanical point of view are
finally discussed. The presented models are described in static and dynamic approaches,
depending on the application.

1.2 The Microscopic Behavior

In this section, the microscopic origin of the magnetization and the magnetic induced defor-
mation is explained based on the energy minimization for the magnetic structure.

1.2.1 Static Energy Contributions
Steels are constituted of grains divided into magnetic domains separated by walls. Each do-
main is already magnetized and oriented by a cosine vector α. The domains are distributed
and oriented in a way to minimized the total internal energy of the material. The arrangement
of the localized magnetic moments is determined by various kinds of energies (expressed in
J.m−3): the exchange energy, the magnetostatic energy, the magnetocrystalline anisotropy
and the magnetoelastic energy [18].

� Magnetocrystalline anisotropy energy EK : Each domain initially magnetized to sat-
uration is oriented in a specific direction called easy direction. The magnetocrystalline
anisotropy energy tends to direct the magnetization in the easy direction’s domains.

EK = K1(α21α
2
2 + α

2
2α

2
3 + α

2
3α

2
1) + K2(α

2
1α

2
2α

2
3) (1.1)
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Where K1 and K2 are the anisotropic constants (in J.m−3) and α = [α1, α2, α3] is the
cosine vector of the domain orientation.

� Exchange energy Ee: It results from the interaction between the electrons of the
nearby atoms. It decreases with higher distance between the atoms.

Ee = Ae(grdα)2 (1.2)

where Ae is the exchange constant (in J.m−3).

� Magnetostatic energy Wmg: It is due to the application of a magnetic field (Zeeman
energy) and to the demagnetizing field Hd. The Zeeman energy tends to align the mag-
netization M in the magnetic field orientation H0. It is also minimal when they are already
parallel. As for the demagnetizing energy, it is due to the interaction between the distant
atoms in order to cancel the global magnetization.

Wmg = μ0MTH0 +
1

2
μ0MTHd (1.3)

� Elastic Energy Ee: It is related to the mechanical elasticity of the material. C is the
stiffness matrix, characteristic of the material. This energy generates a strain ε.

Ee =
1

2
εTCε (1.4)

� Magnetoelastic energy Eme: It results from the interaction between the magnetization
direction and the deformation direction of the crystal. It is a coupling energy between the
magnetization process and the mechanical deformation of the magnetic domain. This
energy is the source of magnetostriction generation.

Eme = bε (1.5)

ε is the strain vector and b is a magneto-elastic coupling vector (in J.m−3).

� Stress-Induced Energy Wmech: It is due to the application of a mechanical stress vector
σ in a specific direction.

Wmech = σTε (1.6)

1.2.2 Magnetization Process
Based on the energy approach described in the previous section based on Brissoneau [18] and
Alves [1], the material tends to minimize the global energy by creating a specific domain struc-
ture that considers the different energy contributions. In the initial state before magnetization,
each domain is already magnetized at a saturation magnetization Ms but each in a different
orientation. The total magnetization vector sum is equal to zero. When a magnetic field is ap-
plied, the global magnetization appears using two mechanisms: the walls displacement and
the rotation of the magnetic moments. These mechanisms occur in a way to minimize the
internal energy as explained before by taking into consideration the exchange between the
atoms, the easy direction magnetization due to the anisotropy energy, the direction of the
applied magnetic field, the demagnetization process due to the magnetostatic energy, the
elastic behavior presented by the magnetoelastic energy and the application of a mechanical
stress. The material magnetizes gradually with higher magnetic fields till reaching the satura-
tion.
The effect of the domain structure on the internal energy is explained using the different
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examples in Fig. 1.1. Configuration (a) has minimal exchange and anisotropy energy, but
an important magnetostatic energy due to the importance of the ratio between the surface of
each magnetic pole and the distance between the two poles. As for configuration (b), the mag-
netostatic energy decreases due to the decrease of surface of each magnetic pole. The walls
energy (sum of the anisotropy and exchange energy inside walls) rises due to the increase of
the walls’ number. In this case, closure domains of type spike can be obtained. Finally, in the
configuration (c), closure domains are introduced (90◦ orientation), magneto-elastic energy is
introduced and the material is deformed in the magnetization direction.

(a) (b) (c)

Fig. 1.1 (a) Uniform magnetization; (b) Magnetization of antiparallel domains; (c) Magnetization of
antiparallel domains with closure domains. [1]

Different other configurations can be obtained such as the single and the double spike
domains and the echelon structure. In this microcsopic study, closure domains with 90◦ ori-
entation are considered for analysis. They are representative of the magnetization and at the
same time the magnetostriction phenomenon, conserving a simple structure. The other struc-
tures give different results but with the same spirit of the considered structure. An optimal
magnetic structure is obtained due to the energy minimization, which modifies the magnetic
behavior as schematically explained in Fig. 1.2. In fact, the application of a mechanical stress
modifies the domains structure in way to increase or decrease the fraction volume of domains
oriented in the same orientation of the applied stress. As for the field application, the domain
structure is also modified in a way to increase the fraction of domains oriented in the same
direction of the magnetic field.
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H

H

(a) (b) (c)

(d) (e) (f)

σ1 σ1

σ2 σ2

(g) (h)

Fig. 1.2 Magnetic Domains for a positive magnetostriction (a,d) Free case; (b) Longitudinal magnetic
field; (c) Transverse magnetic field; (e) Compressive stress (direction 1); (f) Tensile stress (direction 1);
(g) Compressive stress (direction 2); (h) Tensile stress (direction 2). [2]

The whole magnetization and deformation processes are illustrated in Fig. 1.3 for a specific
configuration. The application of magnetic field modifies initially the domains structure without
changing the domains orientation (easy axis magnetization) by only changing the domains
sizes and the volume fraction of each domain based on their initial orientation. In fact, the
size of domains that have an orientation close to that of the magnetic field increases and
the other ones decrease. This phenomenon is called walls displacement, providing a linear
behavior: the magnetization is proportional to the applied magnetic field.
For a higher magnetic field, the size decreasing domains begin to disappear gradually and the
walls are merged. In this case, the walls displacement phenomenon ends and the domains
rotation is triggered, trying to reach the magnetic field’s direction. This behavior called the
domains rotation is non-linear and the magnetization reaches the saturation: the application
of magnetic field cannot magnetize the material anymore.
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H

(a) (b) (c)

(d) (e)

H

H H

Fig. 1.3 Magnetization and positive magnetostriction processes (a) Free case; (b) Low walls displace-
ment; (c) High walls displacement; (e) Maximal walls displacement; (f) Domains rotation. [3] (—— New
deformation, - - - - Initial deformation.)

1.2.3 Magnetic Induced Strain Process
As mentioned before, the magnetization process induces a deformation related to the magne-
toelastic energy and the elastic property of the material. The phenomenon is called magne-
tostriction, providing a deformation in the presence of a magnetic field [19]. The application
of a low magnetic field induces a magnetic strain with a volume conservation. The strain can
be either positive or negative depending on the presence of a mechanical stress that modifies
not only the magnetization process, but also the mechanical behavior.

1.2.4 Energy Minimization
The total microscopic energy ET is calculated by summing up each energy contribution and
minimizing with respect to the strain ε.

ET(α,ε) = EK (α) + Ee(α) + Eme(α,ε) + Ee(ε) −Wmg(α) −Wmech(ε) (1.7)

∂ET(α,ε)

∂ε
= 0 (1.8)

The total energy becomes:

ET(α) = Ae(grdα)2 +
�
K1
�
α21α

2
2 + α

2
2α

2
3 + α

2
3α

2
1

�
+ K2

�
α21α

2
2α

2
3

��

+
1

2
εTCε+ {− 3

2
λ100[σ11

�
α21 −

1

3

�
+ σ22

�
α22 −

1

3

�
+ σ33

�
α23 −

1

3

�
]

−3λ111 (σ12α1α2 + σ13α1α3 + σ32α3α2)} − [μ0Ms(α1H01 + α2H02 + α3H03)]

(1.9)
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with α =
�
α1 α2 α3

�T , H01, H02 and H03 are the components of the locally applied magnetic

field vector H0 =
�
H01 H02 H03

�T , σ11, σ22, σ33, σ12, σ13 and σ32 are the components of
the stress tensor [σ] and λ100 and λ111 are the magnetostriction coefficients. The energy
optimum gives the following magnetization vector and strain tensor:

M(α) = Ms
�
α1 α2 α3

�T (1.10)

[ε]μ =
3

2



λ100

�
α21 −

1
3

�
λ111α1α2 λ111α1α3

λ111α2α1 λ100
�
α22 −

1
3

�
λ111α2α3

λ111α3α1 λ111α3α2 λ100
�
α23 −

1
3

�


 (1.11)

The different characteristics for the electrical steel FeSi 3% including the saturation magneti-
zation Ms, the anisotropy constants K1 and K2, the magnetostriction constants λ100, λ111 and
the Young Moduli in the directions [100], [110] and [111], are given in Table 1.1.

Table 1.1 Electrical Steel FeS single crystal characteristics [3].

Constant Value

Ms (1.59, 1.61) × 106 A/m
(K1, K2) (35;0)(38;0) kJ/m3

(λ100, λ111) (27; -5)(23; -4.5) × 10−6
(E100, E110, E111) (238, 142, 232) GPa

The magnetostriction depends on the domain’s orientation in a crystal. It is only uniform
inside the domain. When working with polycrystals, the magnetostriction varies between one
grain to another. In this case, the magnetostriction modeling becomes more complex and
requires the knowledge of material’s texture. It can also be modeled using mesoscopic and
macroscopic models at higher scales.

1.3 Multiscale Approach

The multiscale model is studied by Daniel et al. [3] considering the interaction between the
grains of polycrystals. Successive calculations and scale changes between the macroscopic
and the mesoscopic scale are performed as shown in Fig. 1.4. The macroscopic applied
stress and field are the system’s magnetic and mechanical excitations. The macroscopic mag-
netization and magnetostriction are the system’s output. The transition is performed by using
the method of localisation inside a homogeneous medium (from macro to micro), a physical
study in the microscopic scale and then a homogenization (from micro to macro) [21]. The
localisation and the homogenization are performed in a way to take into account the materials
microstructure and domains distribution.
Multiscale transition is a good technique that explains and interprets the macroscopic behav-
ior based on microstructural observations of the material’s texture. However, it requires very
high computational power and time consumption. In this study, this technique is presented for
a simple case as an illustrative method, in order to understand the effect of the domain struc-
ture on the magnetization and the magnetostriction. Therefore, several domain structures
for which we compare the magneto-mechanical response under the application of a magnetic
field are considered.
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Fig. 1.4 Multiscale approach [3].

1.4 Static Magneto-Mechanical Models

1.4.1 Description
In this section, we present the static magnetic behavior that can be observed at the macro-
scopic scale. Once the material is magnetized, and especially after the application of a high
magnetic field, the magnetization cancelation requires the application of an opposite mag-
netic field called the coercive field Hc. Otherwise, if the initial magnetic field is removed
without adding the coercive field, a residual magnetization appears due to the presence of im-
perfections and impurities (pinning). We note that Hc is low for soft magnetic materials, hence
the designation soft magnetic material. The irreversible static mechanism described in this
part is the origin of the so called static losses and the static hysteresis Pstt. Fig. 1.5 plots the
loop that presents the magnetic flux density B in Tesla (T) as function of the applied magnetic
field H. B = μ0(H + M) where M is the magnetization and μ0 = 4π.10−7 H.m−1 the vacuum
permeability. It shows the initial magnetization curve and the static hysteresis loop where
static energy losses per cycle corresponding to the loop’s area are observed. The plot also
shows the coercive field Hc = H(B = 0) and the remanent induction Br = B(H = 0). As shown,
the anhysteretic curve is not linear, this is due to the domains rotation at high magnetic field
where the curve’s slop decreases, reaching saturation at very high field. In this section, we
present the static magnetization behavior with irreversibilies using the Jiles-Atherton model
with static parameters that describe the magnetization process.
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Static Hysteresis
Initial Magnetization

H (A/m)

B (T)

Br
Field removal

−Br

Hc−Hc

δ = 1
δ = −1

Fig. 1.5 Hysteresis loop of the static magnetization. [4]

1.4.2 The Jiles-Atherton Model
The static behavior’s identification at a specific induction magnitude is presented based on
the Jiles-Atherton model [22]. Considering a static magnetic field H and magnetization M,
we define the effective magnetizing field Heff = H + αM, where α denotes the inter-domain
coupling. The anhysteretic magnetization Man is expressed by the Langevin function that
contains a linear behavior at low field and a magnetization saturation at high field:

Man = Ms

�
coth

�
Heff



�
− 

Heff

�
(1.12)

Ms is the saturation magnetization and  is a thermodynamic factor that represents the ratio
between the thermal energy and the Zeeman energy. It is expressed by  = kBT/μ0m1 where
kB is the Boltzmann constant, T is the temperature and m1 is the mean effective domain size
[23]. In the Jiles-Atherton’s model, the irreversibility process is modeled by the irreversibility
magnetization Mirr:

dMirr

dHeff
=
Man − Mirr

kδ
(1.13)

k is a factor of proportionality between the wasted energy when a domain wall crosses a
pinning site and the variation of the sample’s magnetization. δ parameter is:

δ =

¨
1, if dH

dt > 0
−1, if dH

dt < 0
(1.14)

The contribution of the reversibility and irreversility phenomena is represented by the magne-
tization reversibility coefficient c, and described as follows:

M = (1 − c)Mirr + cMan (1.15)

The magnetization, the induction and the magnetic field are correlated with the permeability
of vacuum μ0 by:

B = μ0(H + M) (1.16)
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1.4.3 Magnetostriction Model with Local Maximum
Szewczyk [5] developed a magnetostriction model directly related to the walls displacement
and the domains rotation in Mn0.70Zn0.24Fe2.06O4 ferrite. The model considers the transi-
tion between the two mechanisms (walls displacement and domains rotation) quantified by
the Maxwell-Boltzmann statistical distribution. It also includes the magnetostrictive hysteresis
loop.
The walls movement magnetostriction λmov is an even function of the induction with a parabola
shape:

dλmov

dB
= 21B (1.17)

However, the domain rotation magnetostriction from the easy to the hard axis has a linear
dependence with the induction

dλrot

dB
= 2 (1.18)

The transition between both mechanisms is quantified using the Maxwell-Boltzmann statistical
distribution:

W(B) = erf
�
B − Bsw

kb
p
2

�
−
p
2π
(B − Bsw)e−(B−Bsw)/(2k2b )

k
(1.19)

where Bsw is the induction value when the magnetization starts to change from the walls
movement to the domain rotation. The hysteresis loop B(H) and the W(B) distribution are
shown in Fig. 1.6. A first region with low magnetic field and a linear behavior corresponds
to the walls movement and a W(B) ∼ 0. In the transitional region, a non-linear behavior ap-
pears with an intervention of both the walls movement and the domains rotation, W(B) highly
increases. Finally at very high field region, only the domains rotation occurs and W(B) ∼ 1.

Fig. 1.6 Changes in magnetization mechanisms (a) Hysteresis loop; (b) Statistical distribution [5].

Based on the global statistic distribution, the global anhysteretic magnetostriction variation
with the induction is given by:

dλanhyst

dB
=
dλmov

dB
(1 −W(B)) + dλrot

dB
W(B) (1.20)

Eq. 1.20 result is presented in Fig. 1.7. In the walls movement region, the magnetostriction
increases with the induction with an even function (linear λanhyst ∝ B2). As for the transitional
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region, a local magnetostriction maximum is created due to the coexistence of both magne-
tization mechanisms. Finally in the domains rotation region, the magnetostriction decreases
linearly with the induction (2 < 0).

Fig. 1.7 Anhysteretic magnetostriction dependence on the induction [5].

1.4.4 Phenomenological Static Model
This modeling technique uses empirical equations that describe the macroscopic behavior
based on obtained experimental observations. One of these approaches is the Helmholtz
free energy that describes the magneto-mechanical behavior at the macroscopic scale. It
shows a very good agreement with the measurements. A free energy density ψ is considered,
it depends on the magnetic flux density vector B and the total strain tensor ε. Six scalar
invariants are obtained:

1 = tr(ε), 2 =
1

2
tr(ε2), 3 = det(ε), 4 = B.B, 5 = B.(ε.B), 6 = B.(ε2.B) (1.21)

1, 2 and 3 are mechanical invariant, 4 describes the magnetization and 5 and 6 correspond
to magneto-mechanical coupling. The Helmholtz free density ψ is written as [24, 25, 26, 27, 6]:

ψ =
1

2
λL21 + 2G2 +

4∑

=0

g(1)

 + 1
 +14 +

1

2
α55 +

1

2
α66 (1.22)

The function g(1) is given by:

g(1) = α exp
�
4( + 1)

3
1

�
−
¨ 1
8μ0

, if  = 0
0, if  > 0

(1.23)

λL and G are material’s elastic constants (Lamé) and α, β and γ are fitting parameters to be
identified with the measurements. The magnetization vector M and the stress tensor σme are
partial derivative of ψ and are expressed as:

M(B,ε) = − ∂ψ(B,ε)
∂B

and [σme](B,ε) =
∂ψ(B,ε)

ε
(1.24)

Fig. 1.8 illustrates the anhysteretic magnetization and magnetostriction results obtained by
Aydin et al. [6] using the Helmholtz free energy (HE) model and under uniaxial stress. Results
show a good fitting between the model and the experiment. The application of an increasing
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stress modifies the permeability and the magnetostriction peak in the opposite direction: an
increase of the permeability and a decrease of the magnetostriction is obtained between σ =-
30 MPa to σ =10 MPa then a decrease of the permeability and a negative magnetostriction
with an increasing peak value.

Fig. 1.8 Comparison of measured uniaxial stress dependent anhysteretic magnetization and magne-
tostriction with modeled results from the HE model (a) Anhysteretic magnetization; (b) Anhysteretic
magnetostriction results [6].

The magnetostriction strain tensor can be expressed as an even function of the components
of the induction vector B =

�
B1 B2 B3

�T , similar to the Maxwell tensor [28]:

[ε] =
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
 (1.25)

The parameters βn can be identified using experimental measurements and the least squared
method. We note that for a linear case, the strain is proportional to the squared induction,
where N = 1. For non-linear cases, due to the magnetic non-linearty and the saturation aspect,
N > 1. In uniaxial magnetization, the magnetostriction macroscopic expression becomes:

[ε] =
N∑

n=0

βn||B||2(n+1)


1 0 0
0 − 12 0
0 0 − 12


 (1.26)

1.5 Dynamic Magnetization

Previous models from the microscopic to the macroscopic scale explain the magnetization and
magnetostriction phenomena. However, these models do not include the time rate depen-
dent behavior. In fact, most of the times, magnetic materials are submitted to a relatively
high frequenciy excitation (at least 50 Hz). In this case, the dynamic rate dependent process
must be considered next to the static contribution. The resulting damped behavior generates
dynamic losses and a time delay between the magnetization and the excitation field, and be-
tween the magnetization and the magnetostriction. In this section, this dynamic behavior will
be discussed.
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1.5.1 The Eddy Current
Based on the Faraday’s law, a conductive material is subjected to an electro-motive force when
an alternative magnetic field is applied. This generates eddy-current flow in the conductor.
According to the Lenz’s law, the eddy current opposes the variation of the magnetic flux,
forcing it to merge to the skin of the material. This effect is known as the flux skin effect
(Fig. 1.9), studied by Fallah [7]. At low frequencies, this effect is decreased by laminating the
core. However, if the frequency of flux variation increases, the flux skin effect could not be
neglected.

Fig. 1.9 Magnetic field variation in the thickness at different frequencies [7].

The eddy current come from the Maxwell’s equations. In fact, at a local scale, the applied
magnetic field vector H (in A.m−1) variation in the medium generates an electrical current
density J (in A.m−2) with the following relation:

∇ × H = J (1.27)

Furthermore, due to the material’s conductivity σ, an electrical field vector Efield is generated:

J = σEfield (1.28)

The variation of the electrical field in the medium opposes the time variation of the magnetic
flux density:

∇ × Efield = −
∂B

∂t
(1.29)

From the Maxwell’s equation, due to the presence of the time rate induction, a damping factor
appears and generates the so-called eddy current losses. These losses are frequency depen-
dent: for a static case, these losses are negligible. As for high frequencies, these losses are
more effective and responsible for the skin effect that is due to both the time rate dependency
and the dispersion effect in the volume.
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1.5.2 Dynamic Damping Property
The constitutive law that connects the local magnetic field to the local flux density is generally
used as a static relationship. For the linear case, these two variables are related based on
the permeability μ with B = μH. In a general point of view, we use of the Jiles-Atherton model
that includes the walls movement, domains rotation, interdomain coupling and irreversibilities
(B = ƒ (Hs)).
The static model considers that a magnetic field application induces instantaneously the mag-
netization and the flux density of the material. However, the magnetization occurs with a
time rate due to the walls velocity that creates a delay between the magnetic field and the
magnetization. Maloberti et al. [8, 9, 29] have identified a dynamic magnetic property Λ at
the mesoscopic scale that explains the origin of the magnetic delay (Fig. 1.10). The homog-
enized damping property Λ depends on the walls density, mobility and surface. This aspect is
explained in Chapter 2.

Fig. 1.10 Magnetic field smoothing and Aver-
aging [8]. Fig. 1.11 Λ Identification [8].

Using the damping property Λ one gets the mesoscopic magnetic field H needed to obtain
the induction B, with static and dynamic contributions:

H = Hs + σΛ2
∂B

∂t
(1.30)

The constitutive law presented in Eq. 1.30 contains on one hand the static magnetic field that
includes the reversible contribution and the static irreversibility, and a dissipative dynamic
field that corresponds to the dynamic irreversibility and is responsible of the delay between
the field and the induction. This property depends on the flux density and its rate, furthermore,
the magnitude and the frequency as shown in Fig. 1.11.
Fig. 1.12 shows respectively the variation of the module and the angle of the flux with the
frequency, varying the dynamic property Λ. Results show the damping effect that Λ brings: a
higher Λ means a bigger domain size and a more damped magnetization. This effect appears
especially at high frequencies. The damping includes a higher time delay and a decrease of
the amplitude.
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(a) Amplitude (b) Phase angle.

Fig. 1.12 Complex flux vs frequency [9].

The damping property is responsible for the so-called excess losses Pe. It validates the
correlation between the measured hysteresis cycle and the modeled one (Fig. 1.13). The
damping local effect has also been adopted in other studies but in a phenomenological way.
Raulet et al. [10] have expressed the damping contribution with a parameter β:

∂B

∂t
=
1

β
[H − Hs(B)] (1.31)

The dynamic property, next to the Maxwell’s dynamic equations have been used to identify
some experimental results by fitting the dynamic hysteresis between the measurements and
the model, showing a good agreement between the results (Fig. 1.14).

Fig. 1.13 Simulation of cycles with sinusoidal
flux (B = 0.05 − 1.4 T, ƒ = 600, 800 Hz) [9]

Fig. 1.14 Dynamic loops with 50 Hz sine
wave excitation with harmonic 3 [10].

23



Delivrable 3.3
Magneto-mechanical dynamic modeling

1.5.3 Bertotti Power Loss
In the dynamic mode, different losses contribute to the magnetization of the material: the
static losses Physt due to static irreversibilities, the eddy current losses due to the electrical
conductivity known by the classic losses Pe and the excess losses due to the moving walls
dynamic Pec. These losses were considered and identified by Bertotti [11, 30]. The total
power loss in one cycle becomes:

PT = Physt + Pe + Pec (1.32)

Pe + Pec are the dynamic contribution of the total losses. They are dominant at high frequen-
cies. Bertotti has expressed the power as function of the exciting frequency ƒ , the induction
magnitude Bm, the conductivity σ and the thickness h. The hysteresis power losses, classic
power losses and the excess power losses are respectively given by:

Physt = khƒB2m (1.33)

Pe = kc (Bmƒ )2 (1.34)

Pec = ke (Bmƒ )3/2 (1.35)

kh, kc and ke are the Bertotti parameters to be identified. The given loss expressions corre-
spond to sinusoidal induction case. A generalized time dependent formulation can be obtained
for a non-sinusoidal response by:

PT(t) = Physt +
σh2

12

�
dB

dt

�2
+ C′

�
dB

dt

�3/2
(1.36)

Fig. 1.15 illustrates the loss per cycle for a Grain oriented 3% SiFe dependent on the fre-
quency and the induction amplitude. It is shown that the loss increases with the induction
and the frequency. Comparing with the static case near 0 Hz, an initial loss is also present,
the static loss. It is negligible at high frequencies. The concept of energy and losses helps to
understand the dynamic behavior by separating the different dynamic phenomena that occur
simultaneously.

Fig. 1.15 Loss per cycle vs frequency for GO 3% FeSi [11].
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1.6 Dynamic Deformation

1.6.1 Dynamic Hysteresis
The previous dynamic models show that the dynamic behavior takes into account the static
contributions and some damping phenomena: the eddy current effect and the walls move-
ment. In fact, the dynamic behavior may also have an impact on the magneto-mechanical
behavior, by creating a time delay between the magnetization and the magnetostriction. This
phenomenon can be illustrated by the so-called butterfly loop. By plotting the strain as func-
tion of the magnetization, a parabola shape with a delay is generated, similar to the magne-
tization hysteresis loop. Rasilo et al. [12] have studied next to the Jiles-Atheton-Sablik model,
the dynamic response of the magnetostriction (Fig. 1.16). It was shown that the magne-
tostriction dynamic hysteresis increases with the frequency due to the skin effect provided by
the eddy current. The dynamic magnetostriction has also been identified by Hilgert et al. [13]
using the Neural Network technique that presents the frequency dependent magnetostriction
and includes a dynamic hysteresis effect (Fig. 1.17).

Fig. 1.16 Measured magnetostriction vs flux
density [12] Fig. 1.17 Magnetostriction loops (a) Static

identification; (b) Time-rate dependent [13].

1.6.2 Analogy with the Mechanical Elasticity
The magnetostrictive anisotropy of NO steels was studied by Moses and Somkun [17, 31]. The
measurements were performed under rotating magnetic field in order to study the behavior in
the rolling direction (RD) and the transverse direction (TD) using strain gauges. Assuming a
square dependence, the magnetostriction in two directions  and y are given by:

λ = λs(M/Ms)2 −
1

2
λs(My/Ms)2 (1.37)

λy = λs(My/Ms)2 −
1

2
λs(M/Ms)2 (1.38)

M and My are the magnetization components in the RD and TD respectively. Magnetostriction
under rotating magnetic field can be modeled as function of the induction based on an analogy
with the mechanical elasticity by:
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where P, Py the magnetic moduli (in GPa), ξ and ξy are the magnetic Poisson ratios and
Gy is the shear magnetic modulus between RD and TD. Eq. 1.39 is a first order differential
equation with a time delay τ adjusting the hysteresis between the magnetization and the
magnetostriction. Identification results are shown in Table 1.2. The considered model is not
applicable for high magnetization due to the non-linearity when the magnetization is close
to saturation. In this case, the domain wall annihilation and nucleation processes modify the
magnetic and magnetostrictive behavior.

Table 1.2 2-D Magnetostriction model parameters [17].

Material P (GPa) ξ Py (GPa) ξy Gy (GPa) τ (ms)

0.35 mm thick 141 0.9 128 0.9 40 0.10
0.50 mm thick 2145 1.0 81 1.0 42 0.17

The magneto-elastic/mechanical analogy was developed by Lundgren [32] where B2/μ0 is
considered as a magnetic stress that is responsible for the strain vector generation. The matrix
connecting the stress to the strain is a magnetic stiffness matrix analogy to the mechanical
stiffness. As for the delay τ, it represents the magnetic viscosity that is responsible for the
delay between the magnetic stress and the strain.

1.7 Modeling Novelty

A litterature review for different magnetic and magneto-mechanical models developed and
identified by researchers at different scales was presented. The modeling is performed at
the domains scale, the mesoscopic scale, then the macroscopic scales with a transition be-
tween the different scales. Some models are limited to the static state while others include
the behavior in the dynamic state responsible of the generation of magnetic and magneto-
mechanical damping and losses.
Based on the presented state of the art, chapters 2 and 3 present the models used in this work
to characterize the magnetic and the magneto-mechanical behavior.
The magnetic and the magneto-mechanical modeling will be performed from the domain scale
where a specific simple structure is studied and from which, behavioral properties are homog-
enized at the mesoscopic scale. These properties presented at the mesoscopic scale are next
applied in macroscopic models. The latter are chosen in a way to adapt with measurements
performed in deliverable 3.4.
The modeling is performed in the static and the dynamic mode. We mainly focus on the
magnetic level using the Λ model and the Jiles-Atherton model while performing some modi-
fications adapted to the magnetization mechanisms using the Maxwell-Boltzmann’s statistical
distribution. At the magneto-mechanical level, we focus on the magnetostriction model with
the local maximum and the magneto-elastic analogy, taking into consideration the time delay
between the induction and the strain.
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1.8 Laser Treatment: A Review

1.8.1 Laser Treatment and the Magnetic Behavior
Laser have been extensively used for materials processing since their invention. One of its ap-
plications is the surface treatment, a technique used to improve the magnetic performances
within magnetic circuits inside electrical machines. In fact, the surface laser treatment (irradi-
ation, scribing or ablation) can generate stress and magnetic poles, which can induce various
closure domains and domains refinement (Fig. 1.18).

Fig. 1.18 Magnetic Domain (a) Without Laser (b) Laser Direction is TD (c) Laser Direction is RD (d)
Laser Direction is TD+RD [14].

The factors that are affected the most are: size of grains, purity of the material, degree
of refinement of the magnetic domains, surface tension and internal strains. Many studies
have concentrated their researches on the effect of each of these factors, especially domain
refinement and wall movement, on the core loss of the ferromagnetic material.
The enhancement of magnetic properties (hysteresis loss, total core loss, coercivity, rema-
nence, permeability and saturation induction) of 3% silicon steel laminations using three dif-
ferent lasers for scribing has been investigated by Patri et al. [33]. The improvement of the
material’s softness by the laser treatment is explained by three mechanisms: relaxation of
internal stress, domains refinement, walls’ multiplication, walls’ nucleation, walls’ activation
and walls mobility increase. In fact, the high concentration of laser energy deforms plastically
the substrate forming a localized zone of compressive stress creating subdomains that tend to
decrease the magnetoelastic energy and refine the magnetic domain. This mechanism leads
to breakage of bonds, internal stress relaxation and domain wall movement during magnetiz-
ing and demagnetizing cycles, decreasing the total core loss. The domain refinement concept
has been illustrated by Kajiwara and Enokizono [14] using a parametric study where iron loss
decreases for transerve and rolling direction of laser scratches. But when both scratches are
applied simultaneously, the iron loss decreases much more. Iron loss decrease is also im-
proved by applying smaller pitches of laser scratches. Different results collected by Kajiwara
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are displayed in Fig. 1.19.

Fig. 1.19 Comparison between case without laser and with laser for iron losses with diferent configu-
rations (a) TD (b) RD (c) TD + RD (d) irradiation pitch PL variation [14].

Johnson et al. [34] revealed the importance of laser surface scribing with optimum param-
eters (scribe speed, scribe spacing, power and pulse frequency) on core losses reduction in
amorphous metallic ribbons based on domain refinement.
On the other hand, the influence of dotted lines produced by laser scribing on the domain
structure and shape of the hysteresis loops has been described by Zeleňáková et al. [15]. It
was shown that the hysteresis loop is steeper for samples with small density of dotted lines
than for non-treated samples. This is due to the fact that magnetic polarization vector rotates
much narrower and the number of movable domain walls is larger. For high density dots, a
wavy hysteresis curve is generated; the domain wall displacement and the rotation of the
spontaneous magnetic polarization vector happen simultaneously.
Zeleňáková et al. [15] also revealed the impact of laser treatment on the coercivity that in-
creases with the increase of the dots density. Different results are plotted in Fig. 1.20.

28



Delivrable 3.3
Magneto-mechanical dynamic modeling

Fig. 1.20 Hysteresis loops of Finemet: a) Non-treated sample b) Laser treated sample with small den-
sity dotted lines c) Laser treated sample with high density dotted lines [15].

1.8.2 Laser Treatment and the Noise Reduction
Most studies mainly focus on the importance of laser treatment on magnetic losses and the
improvement of softness in magnetic materials. Very few consider the effect of laser treat-
ment on the vibration and the noise behavior that is generated from magnetic forces induced
in the magnetic materials. This approach, next to losses analysis, have been considered by
Lahn et al. [16] and have been studied on grain oriented electrical steel present in three-phase
transformer cores. The main source of transformer noise to be taken into account is the mag-
netostriction; it gives a rough indication but it is not the final indicator of the behavior of the
real cores. Optimized laser parameters are generated so that the noise behavior is improved
by laser domain refinement as shown in Fig. 1.21. Otherwise, non-optimal characteristics
will increase the magnetostriction and the generated noise.

Fig. 1.21 Calculated noise on basis of magnetostriction by considering laser domain refinement
(DR)[16].
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1.8.3 Work Novelty
In this thesis, based on the different strategies (modeling, experimentation and characteriza-
tion), the impact of the laser treatment on the magnetic and the magneto-mechanical behavior
is investigated. Although the laser treatment effect on the iron losses has been widely stud-
ied, a detailed study on the magnetic properties such as the permeability and the dynamic
property Λ has not been presented yet. On the other hand, a higher focus is applied on the
magneto-mechanical behavior. Few studies are performed on the sensitivity of noise and vi-
bration to laser treatment. Similarly to the magnetic interpretation, this thesis describes the
effect on the magneto-mechanical properties and the mechanical response, responsible of the
vibration and noise generation in magnetic components. Based on this sensitivity investiga-
tion on the magnetic and the magneto-mechanical study, one can evaluate the laser’s effect
on the iron losses and the magnetic performances on one hand, and the effect on the vibration
and noise on the other hand. The obtained results constitute a powerful tool for upscaling and
application of the laser technology in magnetic components.

1.9 Conclusion

This chapter presents a litterature review for different magnetic and magneto-mechanical
models developed and identified by researchers at different scales. The modeling is performed
at the domains scale, the mesoscopic scale, then the macroscopic scales with a transition be-
tween the different scales. Some models are limited to the static state while others include
the behavior in the dynamic state responsible for the generation of magnetic and magneto-
mechanical damping and losses.
Based on the presented state of the art, chapters 2 and 3 present the models used in the
thesis to characterize the magnetic and the magneto-mechanical behavior.
The magnetic and the magneto-mechanical modeling will be performed from the domain scale
where a specific simple structure is studied and from which, behavioral properties are homog-
enized at the mesoscopic scale. These properties are presented at the mesoscopic scale are
next applied in macroscopic models. The latter are chosen in a way to adapt with measure-
ments performed in deliverable 3.4.
The modeling is performed in the static and the dynamic mode. We mainly focus on the
magnetic level on the Λ model, the Jiles-Atherton model while performing some modifications
adapted to the magnetization mechanisms using the Maxwell-Boltzmann’s statistical distribu-
tion. At the magneto-mechanical level, we focus on the magnetostriction model with the local
maximum and the magneto-elastic analogy, taking into consideration the time delay between
the induction and the strain.
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Chapter 2

Magnetic Modeling

2.1 Introduction

In this chapter, the magnetic modeling strategy is presented. The target is to present the
magnetic models that describe the static and dynamic behavior. The presented models are
chosen in a way to describe the experimental bevahior. In this way, the models can be used
to identify the magnetic properties based on the measured data.
The modeling technique includes the magnetic local behavior including static and dynamic
properties:

� The static contribution is based on a statistical Maxwell-Boltzmann’s distribution that
quantifies the magnetization mechanisms at the microscopic scale (walls displacement
and domains rotation) and on the Jiles-Atherton model that includes the static losses.

� The dynamic contribution considers the dynamic damping term Λ that represents the
losses due to the microscopic eddy currents.

In addition, we present the space dispersion that shows the gradient of magnetic variables in
the geometry. The modeling is based on the Maxwell’s diffusion equations at the mesoscopic
scale.

2.2 Static Behavior

2.2.1 Microscopic Study
Without considering the irreversibilities at the microscopic scale, the magnetization process
presents two mechanisms: the walls displacement and the domains rotation. In fact, the
magnetic structure is constituted of saturated domains with a Ms magnetization. The total
magnetization of the structure is the vectorial sum of the different domain contributions. In
general, a magnetic structure includes different domains orientations. For a Grain-Oriented
material, most of domains are oriented in the rolling direction, with the presence of other dis-
oriented domains.
The indices → and ← are defined for the 180◦ domains in the  direction, ↑ and ↓ for the 90◦
domains in the y direction and • and ⊗ for the 90◦ domains in the z direction. The indices ↗,
↙, ↖ and ↘ are also defined for the domains oriented in other random directions.
In general, the domains cosine director is designated by α. Their corresponding fraction vol-
umes when no magnetic field is applied, are equal to ƒ0α . In a more general way, we consider
the indice ‖ for the 180◦ domains components with an orientation α (in the case: →, ←, and
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the parallel components of ↗, ↙, ↖ and ↘) and the indice ⊥ for the perpendicular compo-
nents (in this case: ↑ and ↓ and the perpendicular components of ↗, ↙, ↖ and ↘). In order to
simplify the modeling, we consider that the different initial energy contributions are respon-
sible for the creation of the considered structure. During magnetization, the magnetostatic
energy is responsible for the structure evolution with the magnetic field.
At rest, the initial total magnetization is given by:

< M0 >=
∑
α
ƒαM(α) = (ƒ0α‖ + ƒ

0
α⊥)Ms = 0 (2.1)

When a magnetic field is applied, the domains volume fraction ƒα varies with the magnetic
field and the total magnetization is non zero. The average magnetization of a grain using a
linear combination of all the magnetization vectors becomes:

< M > (H) =
∑
α
ƒαM(α) (2.2)

ƒα is calculated using the volume fractions of Maxwell-Boltzmann’s type ƒα based on a proba-
bility density approach [28] as function of the applied magnetic field H. It is a statistical theory
in a canonical type set without degeneration that considers the energy density of ET(α).

ƒα(H) =
e−As.ET (α)∑
β e
−As.ET (β) (2.3)

∑
α
ƒα = 1 (2.4)

As is a phenomenological parameter that takes into account the domain walls and the inhomo-
geneities. As was identified by Daniel et al. [35, 36] for single and polycrystals by neglecting
the rotation phenomenon at very low magnetic field (near zero):

As =
3χ0

μ0M2s
(2.5)

Where χ0 is the material’s initial susceptibility, μ0 is the vacuum permeability and Ms is the
magnetization at saturation.

In order to calculate the volume fractions as function of the applied magnetic field, the sum
of the different energy contributions is considered for zero magnetic field defined by E0T . The
initial volumes fractions can be written as:

ƒ0α =
e−As.E

0
T (α)

βe−As.E
0
T (β)

(2.6)

When the magnetic field is applied, the fraction volume includes the magnetostatic energy.
Eq. 2.3 becomes:

ƒα(H) =
e−As.(E

0
T (α)−μ0AsMα.H)

∑

β

e−As.(E
0
T (β)−μ0AsMβ.H)

=

e−As.E
0
T (α)∑

γ
e−As.E

0
T (γ)

eμ0AsMα.H

∑

β

e−As.E
0
T (β)

∑
γ
e−As.E

0
T (γ)

eμ0AsMβ.H

(2.7)
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ƒα(H) =
ƒ0αe

μ0AsMα.H

∑
β ƒ

0
βe

μ0AsMβ.H
(2.8)

Hence, the average magnetization and the magnetostriction can be determined as function
of the initial volume fractions and the applied magnetic field. The parallel and perpendicular
fraction volumes for a domain with an α orientation can be derived from Eq. 2.8.

ƒα‖(H) =
ƒ0α‖cosh(μ0AsMsα‖H)

∑
β ƒ

0
β‖cosh(μ0AsMsα‖H) +

∑
β ƒ

0
β⊥cosh(μ0AsMsα⊥H)

(2.9)

In this study, for simplification of the process, the structure given in Fig. 2.1 is considered,
containing domains oriented in the magnetic field’s direction (180◦) and domains oriented in
the transverse directions, without the presence of inclined domains. When no magnetic field
is applied, the total magnetization equals to zero. When a magnetic field applied in the 180◦
direction, the size of 180◦ domains increases and the transverse domains size decreases.
Considering the initial volume fractions, the volume fractions corresponding to a magnetic
field H in Eq. 2.9 become:

ƒ→(H) =
ƒ0→e

Asμ0MsH

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥
, ƒ←(H) =

ƒ0←e
−Asμ0MsH

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥

ƒ↑(H) =
ƒ0↑

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥
, ƒ↓(H) =

ƒ0↓
ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥

ƒ•(H) =
ƒ0•

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥
, ƒ⊗(H) =

ƒ0⊗
ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥

(2.10)

H
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(2)
(3) (4)

(1)
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g


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y

Fig. 2.1 Magnetization of a magnetic domain with 180◦ and 90◦.

The magnetization in the 180◦ orientation as function of the magnetic field becomes:

M‖(H) =
ƒ0‖ sinh(Asμ0MsH)

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥
Ms (2.11)
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For low magnetization, Eq. 2.11 is linear. This corresponds to the magnetization range where
the walls displacement phenomenon occurs. The linearization of these equations using a first
order Taylor development gives:

M‖(H) ∼
�
1 − ƒ0⊥

�
3χ0H (2.12)

The relative permeability is then defined:

μr = 3χ0
�
1 − ƒ0⊥

�
+ 1 (2.13)

Based on Eq. 2.13, the increase of the 90◦ domains fraction decreases the permeability in
the  direction and increases the permeability in the other directions. A maximal permeability
in the  direction is obtained for zero 90◦ domains.
If the applied magnetic field and the magnetization were not parallel (more realistic case),
the domains rotation is triggered in order to align the magnetization of the domain with the
applied magnetic field. In this case, the permeability depends also on the domains density: a
higher density reduces the permeability because the anisotropy decreases and the demagne-
tizing energy becomes more important. However, for magnetization close to saturation and
corresponding to a very high magnetic field (1,000 A/m), the disorientation and the domains
density have no more effect on the permeability because the disorientation effect vanishes
due to the total domains rotation at saturation.

2.2.2 Mesoscopic Approach: Anhysteretic Magnetization
In this section, an upscale of the microscopic analysis is presented at the mesoscopic scale. At
this level, the reversible process represents the variation of the flux density B with an anhys-
teretic magnetic field Hn without taking into account the static losses. For a specific magne-
tization level, the magnetic mechanisms are present with different proportions quantified by
the statistical function W(M):

� The walls displacement with a fraction volume of 1 −W(M) for a specific induction

� The domains rotation with a fraction volum of W(M)

At low magnetization, the first phenomenon is only present (W(M) = 0) with a linear behavior
characterized by the permeability μ (or the suseptibility χ).
However, when reaching a certain magnetization Ms, the domains rotation mechanism starts
to appear due to the maximal capacity of the corresponding walls to move. This is related
to the fact that the demagnetizing energy becomes more important than the anisotropy. This
transitional region, where the displacement and rotation phenomena coexist, is characterized
by a property km. A higher km means a lower permeability at saturation. In fact, this property
is related to the contribution of the anisotropy energy and the demagnetizing energy. When
the domains rotation phenomenon occurs, the anisotropy energy begins to disappear and the
demagnetizing energy increases. Therefore, the apparent permeability decreases and the
saturation phenomenon occurs. The transition between the linear region and the saturation is
described by the km parameter sensitive to the energy contributions in this region.
For a perfect case, when all the principal domains are parallel to the magnetic field, this
transitional region does not exist. In the practical case, this region exists and W(M) increases
gradually from 0 to 1. At the final state, the saturation is obtained, leading to W(M) = 1. W(M)
is a statistical distribution defined by Szewczyk [5], using the Maxwell-Boltzmann statistical
distribution with the following cumulative distribution function:





W(M) = erf
�
M − Ms

km
p
2

�
−
p
2

π

(M − Ms)e−(M−Ms)/(2k2m)

km
if |M| > |Ms|

W(M) = 0 elsewhere
(2.14)
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With erf() being the error function given by:

erf() =
1
p
π

∫ 

−
e−t2dt (2.15)

Szewczyk [5] has used the Maxwell-Boltzmann distribution to analyze the magnetostrictive
behavior. In this study, we also include this concept in the magnetization. In fact, we consider
the first mechanism, the walls displacement as a linear process where the application of a
magnetic field increases proportionally the flux density Bmo with a relative permeability μr .
This property is sensitive to the domains structure as described in section 2.2.1, it increases
with the closure domains decrease.

dMmo

dH
= μr − 1 (2.16)

As for the second mechanism, the domains rotation, the magnetization reaches the saturation
even with the application of an extra magnetic field:

dMrot

dH
= 0 (2.17)

Therefore, using the combination with the statistical distribution W(M), we get the total varia-
tion:

dM

dH
=
dMmo

dH
(1 −W(M)) + dMrot

dH
W(M) = χ (1 −W(M)) (2.18)

and

H =
∫ M

0

1

χ (1 −W())d = ƒ (M,χ,Ms, km) (2.19)

This equation gives the total magnetization anhysteretic curve. The originality of this equation
appears in the static parameters involved. In fact, χ is generally shown in linear relations
between H and M, but here we can see it even with the non-linearity. Furthermore, we can
notice where the transition of phenomena begins using Ms and what is the intensity of this
process based on km. Therefore, this model describes what happens in the microscopic scale
and expresses it in the mesoscopic scale in a clear way.
We introduce the magnetic flux density or induction given by:

B = μ0(H + M) (2.20)

When H <<< M, B = μ0M. The anhysteretic model can replace M by B, by replacing the Ms,
km and χ by Bs, kb and μ, where Bs = μ0Ms, kb = μ0km and μ = χ + 1 (the permeability).
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Fig. 2.2 Modeling the changes in the mechanism of magnetization with the permeability μ.
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Fig. 2.3 Modeling the changes in the mechanism of magnetization with the switching induction Bs.
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Fig. 2.4 Modeling the changes in the mechanism of magnetization with transition intensity kb.

Fig. 2.2, Fig. 2.3 and Fig. 2.4 show the magnetization curve compared with the pro-
cesses distribution by varying the model’s parameters μ, Bs and kb. The increase of the
permeability μ increases the slope of the linear region without changing the mechanisms dis-
tribution. As for the Bs increase, the transition region begins at higher induction. Finally, the
increase of kb leads to a faster transition between the two magnetic mechanisms.

2.2.3 Irreversibilities Consideration
In this section, the non-linearity effect due to the static behavior and the static losses effect is
presented. The static behavior at a specific induction magnitude can be identified using the
Jiles-Atherton model. In fact, the static behavior is observed at very low exciting frequency
(5 Hz), where the dynamic behavior is neglected. Considering a static magnetic field Hs and
its corresponding magnetization M, the effective field Heff = Hs + αM. The anhysteretic mag-
netization Man expressed initially by the Langevin function is replaced by Eq. 2.19 for Heff
as function of Man. The other Jiles-Atherton equations are the same as Eq. 1.13 and Eq.
1.15: In the Jiles-Atherton’s model, the irreversibility process is modeled by the irreversibility
magnetization Mirr:

dMirr

dHeff
=
Man − Mirr

kδ
(2.21)

,
M = (1 − c)Mirr + cMan (2.22)

and
B = μ0(Hs + M) (2.23)
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The presented model includes the anhysteretic behavior related to the anhysteretic magne-
tization processes (walls displacement and domains rotation), and considers the static losses
responsible of the static hysteresis. The model is presented by a function of the induction:

Hs = JA(B) (2.24)

The static model is independent of the volume: we consider that the material magnetizes
uniformly in the static mode and the Maxwell equations are not effective. In the next part, the
high frequency excitation requires the inclusion of the dynamic losses and the effect of the
volume dispersion (included in the Maxwell’s equation) on the induction and magnetic field
distribution.

2.3 Dynamic Behavior

At the mesoscopic scale, we propose to model the dynamic behavior using the Λ model de-
veloped by Maloberti [8, 9, 29]. In fact, microscopic eddy currents are generated around the
walls. This creates microscopic losses given by:

pμ =
∫∫∫

σ−1j2μ(r)d
3r =

�
2ϑJsS

m

�
2 (2.25)

The lost power appears in the form of microscopic current density jμ around the moving walls.
When the material is magnetized in the linear case, the walls displacement phenomenon
occurs between the 180◦ domains within a distance Δ. The average magnetization of the
domains set of Fig. 2.1 can be written as:

< M >=
2Δ

g
Ms (2.26)

By replacing the magnetizations M and Ms by their corresponding induction B and saturation
induction Js we obtain the velocity of one wall :

 =
g

2Js

∂B

∂t
(2.27)

At the grains scale, g is proportional to the domains density n and the walls surface S based
on the following:

n ∝
2

g
and S ∝

This means that g ∝
2

nS
.

Upscaling to a set of domains, the domains wall velocity  becomes:

 =
1

nSJs

∂B

∂t
(2.28)

Replaceing it in Eq. 2.25, the dissipated power can be expressed as follows:

pμ = (2ϑJsSmn2)
−1
�
∂B

∂t

�2
=
∫∫∫

H.
∂B

∂t
d3r (2.29)

Where σ is the electrical conductivity, Js is the saturation magnetic polarization, ϑ a real num-
ber between 0 and 1,  is the average walls velocity, S their mean surface, m their
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average mobility and n their volume density. Accumulating microscopic energy on each wall,
we get the total magnetic field H as the sum of a static contribution Hs and a time dependent
term containing the induction rate ∂B

∂t .

H = Hs +
∑

σΛ2(∂tB)n−1 S−1 (r− r, r ∈ S) (2.30)

∫∫∫
(r− r, r ∈ S)d3r = S (2.31)

Homogenizing the damping behavior, one gets,

Λ =

√√√ 1

2σϑJSnmS
(2.32)

The total magnetic field is the sum of the static magnetic field and the dynamic magnetic
field due to Λ. The time and space dependent magnetic field and flux density at time t and a
position r are given by:

H(r, t) = Hs(r, t) + Hdyn(r, t)

H(r, t) = Hs(B(r, t)) + σΛ2
∂B

∂t
(r, t)

(2.33)

The locally induced flux density presents a delay with the local magnetic field due to the
damping behavior resulting from the microscopic eddy current losses around each magnetic
wall. This damping property is responsible of the so-called excess losses, increasing with the
frequency.
A 3-D approach similar to the anhysteretic case can be adopted when studying the dynamic
contribution. In fact, Λ has different responses from one direction to another when the anisotropy
is relatively high. The damping coefficient can relatively increase or decrease based on the
magnetic structure in each direction. The 3-D dynamic representation is given by the following
tensor:

[Λ] =



Λ Λy Λz
Λy Λyy Λyz
Λz Λzy Λzz


 (2.34)

The considered behavioral law is used in this study to describe the connection at the meso-
scopic scale between the local magnetic field to the flux density. It is an essential key for
solving the dynamic Maxwell equation presented in the next section.

2.4 Energy Formulation

A representation of the magnetic behavior at the mesoscopic scale is presented based on an
energy formulation. The derivation of time and space dependent differential Maxwell’s equa-
tion for the mesoscopic magnetic field and flux density is performed. Solving these equations
can be performed by including the considered behavior law with the static and dynamic con-
tributions. The energy formulation consists in itemizing the applied energies (action) and the
internal energies (reaction) based on the concept of energy conservation.
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2.4.1 Electrical Work
The current density J representing the speed of the moving electrical charges is coupled with
the electrical field Efield that provides the electromotive force which is the origin of the charges
motion. The coupling of these variables gives the electrical work contained inside the material
as follows:

Ee =
∫

Efield.Jdt (2.35)

2.4.2 Magnetic Work
The induction rate ∂tB representing the magnetic charges velocity is coupled with the mag-
netic field H that provides magnetomotive force. The coupling generates the magnetic work
given by:

Emg =
∫

H.
∂B

∂t
dt (2.36)

2.4.3 Lagrange Formulation
The total energy integrated in the volume Ω is the contribution of both the electrical and the
magnetic energies. It gives the Lagrange energy:

L =
∫

t

∫

Ω

(Efield.J+ H.
∂B

∂t
)dΩdt (2.37)

The electromagnetic behavior at the local space is modeled using the Maxwell’s equations
(Eq. 2.38) that include both space and time dependency.

∇× H = J

∇× Efield = −
∂B

∂t
∇.B = 0

(2.38)

Combining the set of equations Eq. 2.38, and considering a linear electrical behavior J =
σEfield, the following diffusion differential equation is obtained,

1

σ
∇× (∇× H) +

∂B

∂t
= 0 (2.39)

Using the Maxwell equations (Eq. 2.38) in the energy equation (Eq. 2.37),

L =
∫

t

∫

Ω

�
1

σ
(∇× H).(∇× H) + H.

∂B

∂t

�
dΩdt (2.40)

Applying the integration by parts to Eq. 2.40,

L =
∫

t

∫

Ω

�
1

σ
[∇. (H× (∇× H)) + H.∇× (∇× H)] + H.

∂B

∂t

�
dΩdt (2.41)

L =
∫

t

∫

S

1

σ
H× (∇× H)dSdt +

∫

t

∫

Ω

H.
�
1

σ
∇× (∇× H) +

∂B

∂t

�
dΩdt (2.42)

Applying Eq. 2.39 in Eq. 2.42 and Eq.2.40,
∫

t

∫

Ω

1

σ
(∇× H).(∇× H)dΩdt +

∫

t

∫

Ω

H.
∂B

∂t
dΩdt =

∫

t

∫

S

1

σ
H× (∇× H)dSdt (2.43)
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The left terms of Eq. 2.43 are respectively the electrical and the magnetic energies rep-
resenting the internal materials reaction due to the application of the external energy Epp
(right term of Eq. 2.43) that is supplied by an external magnetic field and that takes effect on
the material’s surface. This leads to the following energy conservation: the applied external
energy on the surface of the body generates magnetic and electrical volume energies.

Ee + Emg = Epp (2.44)

2.5 Unidirectional Diffusion

2.5.1 1D Case: Problem
The 1D case is a simple application of the magnetic problem described in Section 2.4, describ-
ing the magnetic sheet’s behavior insite the Single Sheet Tester. A unidirectional magnetic
field H(± h

2 , t) = H(t) is applied on the surface of the sheet as shown in Fig. 2.5. In this case,
the complexity of the problem is reduced to a 1D analysis thanks to the following contributions:

1. The geometry is symmetric with respect to the y plane in the SST.

2. The in-plane dimensions are more significant than the thickness.

3. The applied magnetic field in the  direction is symmetric with respect to the y-plane
and uniform on the surface.

4. Measurements are only collected in the  direction.

H

h

b

L 

z
y

Fig. 2.5 1D Case.

When the surface magnetic field is applied in the  direction, the magnetization occurs in all
directions due to the anisotropy energy. However, we only consider the magnetization in the
lamination direction ( direction) because measurements are only provided in the longitudinal
direction. The horizontal variables vary with the sheet’s cross-section (z direction). The 3D
Maxwell’s equation (Eq. 2.43) is reduced to a 1D diffusion equation (Eq. 2.45). 1D power
equations with two local variables B(z, t) and H(z, t) are obtained:

� Maxwell’s Equation
1

σ

∂2H

∂z2
=
∂B

∂t
(2.45)

� Boundary Conditions

H(± h
2
, t) = H(t) (2.46)

� Electrical Power:

Pe = bL
∫ h

2

− h
2

1

σ

∂H

∂z
.
∂H

∂z
dz (2.47)
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� Magnetic Power:

Pmg = bL
∫ h

2

− h
2

H.
∂B

∂t
dz (2.48)

� Applied Power:

Ppp = bL
�
1

σ
H.
∂H

∂z

� h
2

− h
2

(2.49)

Due to the symmetry, H(h2 , t) = H(− h
2 , t) = H(t) and ∂H

∂z (
h
2 , t) = − ∂H

∂z (− h
2 , t), the applied

energy becomes:

Ppp =
bL

σ
.H(t).

�
∂H

∂z

� h
2

− h
2

=
bL

σ
.H(t).

∫ h
2

− h
2

∂2H

∂z2
dz (2.50)

Using the 1-D Maxwell’s equation (Eq. 2.45) and the average relation B(t) =
1

h

∫ h
2

− h
2

B(z, t)dz,

the applied power becomes:

Ppp = bL.H(t).
∫ h

2

− h
2

∂B

∂t
dz = bLh.H(t).

∂B

∂t
(2.51)

Anhysteretic Curve
Static Hysteresis
Eddy-Current Dynamic Loop

Total Hysteresis

H (A/m)

B (T)

Fig. 2.6 Schematic hysteresis loops with static and dynamic magnetizations.

41



Delivrable 3.3
Magneto-mechanical dynamic modeling

2.5.2 Power Sorting
Solving the Maxwell integral equation that contains two variables B(z, t) and H(z, t) requires
the knowledge of a behavior law that connects the local induction to the local magnetic field.

H(z, t) = Hs (B(z, t)) + σΛ2
�
B,

∂B

∂t

�
∂B

∂t
(z, t) (2.52)

Replacing the behavior law (Eq. 2.52) in the energy equation, we get:

bL
∫ h

2

− h
2

1

σ

�
∂H

∂z

�2
dz + bL

∫ h
2

− h
2

Hs(t)
∂B

∂t
dz + bL

∫ h
2

− h
2

σΛ2
�
∂B

∂t

�2
dz = bLhH(t)

∂B

∂t
(2.53)

Pe + Pstt + Pec = Ppp (2.54)

The total supplied power is equal to the sum of the electrical power (eddy current power) Pe
(Fig. 2.6), the area between the green and red loops), the static power due to the static irre-
versibilities Pstt (Fig. 2.6), green loop’s area) and the excess losses due to the local damping
contribution Pec (Fig. 2.6), area between the red and purple loops). The applied power
Ppp is the hysteresis loop between the applied field and the average induction, macroscopic
variables that can be determined experimentally.

2.5.3 1-D Case: Analytical Solution
We present the analytical linear solution of the diffusion equation with a sinusoidal input/output
system. Assuming that the static and the dynamic properties are independent of the magnetic
variables and neglecting the static losses, the diffusion differential equation is analytically
solved thanks to the linearity of the model and the behavior law. A transformation of the
transient equations of Eq. 2.45 and Eq. 2.46 to the frequency domains is considered and a
dispersion relation is obtained using the Fourier time and space transform [9]. The permeabil-
ity μ is the static linear property (B = μHs). The behavior law is then given by,

H = μ−1B + σΛ2∂tB (2.55)

The time and space (, t) dependent equation is converted to a (k, ω) space using the Fourier
Transform, we get the following dispersal equation:

k2(1 + jωσμΛ2) + jωσμ = 0 (2.56)

k is the wave vector and ω the angular velocity related to the exciting frequency by ω = 2πƒ .
The solution of the dispersal equation gives the following: k is a complex number in the form
k = k− − jk+ where,

k±(μ,Λ, σ,ω) =

√√√1

2

�
μσω

1 + (σΛ2μω)2

��
±σΛ2μω +

q
1 + (σΛ2μω)2

�
(2.57)

The complex magnitude of the local magnetic flux density B̃(z,ω), solution of Eq. 2.45 with
the boundary conditions (Eq. 2.46) can be expressed by:

B̃(z) =
μH̃

1 + jσΛ2μω

cosh [(k+ + jk−)z]
cosh [(k+ + jk−)h/2]

= |B̃(z)|ejφ (2.58)

Therefore, the average flux density is eventually obtained.

B̃ =
1

h

∫ − h
2

− h
2

B̃(z)dz =
2μH̃

h(k+ + jk−)(1 + jσΛ2μω)
tanh((k+ + jk−)

h

2
) (2.59)
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2.5.4 Adaptation of the Dispersion Equation with the SST
Measurements performed in the Single Sheet Tester (SST) consist in measuring the applied
magnetic field for a specific average induction signal specified by the user with a specific
amplitude and exciting frequency. The problem considers the inversion of Eq. 2.59.

H̃ =
h(k+ + jk−)(1 + jσΛ2μω)
2μtanh((k+ + jk−)h/2)

B̃ (2.60)

The determination of the surface magnetic field (Eq. 2.60) allows the calculation of the local
flux density’s complex magnitude using Eq. 2.58, and derives a time response of this variable:

B(z, t) = |B̃(z)|cos(ωt + φ) (2.61)

The proposed analytical solution calculates the local dynamic behavior based on the knowl-
edge of the magnetic properties and a given average magnetic field. It is also the key for
determining the effect of the magnetic properties on the dynamic local response (section
2.5.6).

2.5.5 1-D Case: Sensitivity of the Measured Signals
In this section, we present the effect that produces the static property μ and the dynamic prop-
erty Λ on the magnetic field signal H(t) when applying the same induction signal B(t). The
purpose of the study is to understand modification of the dynamic response when changing the
magnetic properties. The effect of the permeability μ on the hysteresis loop is shown in Fig.
2.7a, and its effect on the magnetic field response is illustrated in Fig. 2.8a. An increase of
the permeability increases the hysteresis cycle’s slope and a decrease in the magnetic field’s
magnitude. On the other hand, the dynamic property Λ effect is studied in Fig. 2.7b and Fig.
2.8b. The hysteresis loops have the same slope but the hysteresis width increases with Λ,
creating a higher excessive loss. Furthermore, the time response of the magnetic field shows
a time delay increase with Λ. In fact, the dynamic property represents the magnetic damping
property of the material that describes the microscopic dynamic behavior: a damping means
a lower walls velocity, fewer domains and a lower mobility. At Λ = 0 μm, a small hysteresis
persists, it is due to the eddy-current losses.
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(a) Influence of the permeability.
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Fig. 2.7 Hysteresis loop modification with the magnetic properties. (Model)
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Fig. 2.8 Transient response of the applied magnetic field for the same induction. (Model)

2.5.6 Sensitivity of the Dynamic Response
The transient response of the flux density is calculated for different static μ and dynamic Λ
properties using the linear analytical approach developed in section 2.5.3. This parametric
study helps to understand the effect of magnetic properties and eventually the effect of the
laser treatment sensitive to the magnetic properties. The reference parameters are: the thick-
ness h = 0.23 mm, the average induction magnitude |B̃ | = 1 T, the induction angle 0 rad,
the exciting frequency ƒ = ω/2π = 1,000 Hz and the electrical conductivity σ = 2.106 (Ω.m)−1.
The variable parameters are the relative permeability μr = μ/μ0 and the dynamic property Λ.
The effect of the static property μr and the dymanic property Λ in terms of magnitude and
delay is observed by comparing the local induction with the average induction with respect to
the magnetic field on one hand (Fig. 2.9 and Fig. 2.10), and with respect to the average
induction on the other hand (Fig. 2.11 and Fig. 2.12).
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Fig. 2.9 Effect of μr on the calculated flux density distribution with respect to the applied magnetic
field.

44



Delivrable 3.3
Magneto-mechanical dynamic modeling

-0.5 0 0.5

z/h

0

1

2

3

4

5

6

7
10-3

= 0 m
= 50 m
= 75 m
= 100 m
= 200 m
= 400 m

(a) Magnitude distribution

-0.5 0 0.5

z/h

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
= 0 m

= 50 m
= 75 m

= 100 m
= 200 m

= 400 m

(b) Delay distribution

Fig. 2.10 Effect of Λ on the calculated flux density distribution with respect the applied magnetic field.

The increase of the permeability induces an increase in the dispersion of the flux density
profile (skin effect) as shown in Fig. 2.9. The magnitude and the delay of the induction
with respect to the magnetic field increase. On the other hand, the decrease of the dynamic
property (domains refinement) leads to an increase in the profile’s dispersion with respect to
the magnetic field as shown in Fig. 2.10. The magnitude increases and the induction’s delay
with respect to the magnetic field decreases when decreasing Λ.
Fig. 2.11 and Fig. 2.12 plot the distribution of the magnitude and the angle of the flux
density in the cross section for different values of μr and Λ and with respect to the average
induction. The increase of the permeability induces an increase in the dispersion of the flux
density magnitude profile (Fig. 2.11a) and an increase in the dispersion of the flux density
phase profile for a limit of μr = 5,000 then a decrease of the profile dispersion (Fig. 2.11b).
On the other hand, the decrease of the dynamic property leads to an increase in the magnitude
dispersion with an optimum at Λ=100μm followed by a decrease (Fig. 2.12a). As for the angle
between the local and the average induction, its profile is more dispersed when Λ decreases
(Fig. 2.12b).
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Fig. 2.11 Effect of μr on the calculated flux density distribution in the cross section.
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Fig. 2.12 Effect of Λ on the calculated flux density distribution in the cross section.

2.6 Conclusion

In this chapter, the static and dynamic modeling techniques adopted for the magnetic behavior
are presented. The model methodology coupled with experimental measurements is described
in deliverable 3.4 in order to identify the magnetic properties that describe the behavior of a
measured sample, using a simple 1D model. In the next chapter, we present the models that
describes the magneto-mechanical aspect of magnetic materials.
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Chapter 3

Magneto-Mechanical Modeling

3.1 Introduction

The different magnetic factors responsible of the mechanical excitation and vibration in elec-
trical steels are presented and described in this chapter. The contribution of each magnetic
source can vary from one application to another. The potential sources are the following:

� Lorentz force: this force is due to the interaction between the magnetization and the
electrical excitation represented by the charges of moving particles. The determination
of these forces can be directly calculated from the magnetic model, once the induction
and the current density distributions are known. The Lorentz force is expressed by,

fL = J× B (3.1)

In a thin plate, this force is more important in the surface’s normal direction where the
transverse vibration is more significant than the longitudinal deformation.

� Maxwell force: this type of force is mainly found at the material’s interface, and its
effect is amplified in the airgap between two magnetic materials in rotating machines
and inductors for example. This surface force corresponds to a pressure applied at the
interface between two materials with different permeabilities (e.g. electrical steel vs air).
Similarly, this force can be directly determined when the induction’s gradient is known.

� Magnetostriction: it is the deformation of the magnetic material when subjected to
a magnetic field. Magnetostriction is a property of the material defining the magneto-
elastic coupling characteristic. It induces a behavior similar to that of the thermal ex-
pansion. The determination of the magnetostriction is not so obvious because it is an
intrinsic characteristic and it depends on the magnetic domain structure. Therefore, this
property is identified by measurements. We can define a model that represents the mag-
netostrictive behavior as function of the induction.
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3.2 Contribution of the Acting Forces on Vibration in Electrical
Machines

Different studies on transfomers, inductors and electrical machines have been carried out in
order to determine the forces’ effects on the vibration of the structure. The contribution of
the Maxwell forces and magnetostriction has been mainly considered. In fact, Maxwell forces
inside the material are neglected, but they are significant on the interface between air and
the material due to the high variation of magnetization between air and the magnetic ma-
terial [37]. Maxwell forces are especially effective with the presence of airgaps in electrical
machines. For transformers, where closed circuit is considered, the effect of Maxwell forces
compared with magnetostriction is neglected because no airgap is considered. Rossi and Le
Besnerais [38] have analyzed in the case of a inductor with airgap the cancellation effects of
the overall magnetic forces due to magnetostriction and Maxwell forces and have developed
a model to better understand how to compensate Maxwell and magnetostrictive forces and
reduce vibrations. They also showed that there is no general rule regarding the contribution
of magnetostriction and Maxwell forces. In the case of rotating machines, the Maxwell forces
are mainly dominant in the iron-air interface where rigid body displacements and elastic de-
formations of the structure occur at the same time, as for magnetostriction, only deformation
of the structure’s material occurs. Pellerey [39] and Hallal [40] neglected the effect of mag-
netostriction on the vibration of rotating machines in front of the Maxwell forces that were
treated carefully.

3.3 The Maxwell’s Forces

The Maxwell’s forces are due to the variation in magnetization through a specific volume.
In electrical steels, the Maxwell’s forces appear in two ways: the volume forces fmag due to
the induction gradient, and the surface forces Fmag due to the sudden permeability change
between the material and the air. The total Maxwell’s forces, known as the electromagnetic
forces, are given by,

fem =
∫∫∫

Ω
fmagdΩ +

∫∫

S
FmagdS (3.2)

The volume force fmag integration can be expressed as an equivalent surface force using the
gradient theorem (Fig. 3.1).
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3.3.1 Application on a Plate without Airgap
In this study, we consider the Maxwell’s forces in the case of a simple plate subjected to a uni-
form surface magnetic field. The considered plate is subjected to a magnetic field in a specific
region of space (Fig. 3.2). In fact, the chosen configuration represents the 1D field diffusion
studied in section 2.5 of chapter 2.

Ω

fmg

S

[T ]mg

Fig. 3.1 The volume forces fmag and the equivalent surface forces [T]mag.



yz

Fig. 3.2 Magnetic plate subjected to an in-plane magnetic field.

Body force
The volume force due to the magnetization variation is given by the following gradient relation[41,
42, 43, 44, 45, 46]:

fmag = ∇B.M =
1

2μ0
∇B2 (3.3)

Using the Gradient theorem on the volume Ω and the surface S:
∫∫∫

Ω

1

2μ0
∇B2dΩ =

∫∫

S

1

2μ0
B2dS (3.4)

Therefore, the equivalent surface forces on the upper and the lower plate’s surfaces are:

T↑ =
1

2μ0
B2(

h

2
)n↑ =

B.M

2
n↑ (3.5)

T↓ =
1

2μ0
B2(− h

2
)n↓ = −T↑ =

B.M

2
n↓ (3.6)
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n↑ and n↓ are the normal vectors of the upper and the lower surfaces respectively. When
the magnetic field is the same, both surface forces are equal in magnitude but opposite in
orientation. The corresponding stress tensor at any surface becomes:

[T]mag =
�B.M

2 0
0 B.M

2

�
(3.7)

On the other hand, the horizontal body force is equal to zero. In fact, considering a uniform
horizontal magnetization, the gradient of the induction ∇B is equal to zero. The equivalent
surface forces oriented to the right T→ and to the left T← in the longitudinal direction are:

T→ = T← = 0 (3.8)

In reality the horizontal body force exists due to the variation of the induction. But this varia-
tion is local at the transition position between the magnetized and the non-magnetized zone.
This variation induces negligible force.

Surface Force
Another force is applied on the surface force between the material and air and is due to the dis-
continuity between both media and is considered as a pressure force perfomed on the surface.
The surface force F↑ and F↓ on the upper and the lower surfaces is given by [47]:

F↑ =



�
B+n
�2

2μ0
−
�
B+τ
�2

2μ0


n↑ −



�
B−n
�2

2μ0
−
�
B−τ
�2

2μ0


n↑ (3.9)

F↓ =



�
B+n
�2

2μ0
−
�
B+τ
�2

2μ0


n↓ −



�
B−n
�2

2μ0
−
�
B−τ
�2

2μ0


n↓ = −F↑ (3.10)

n and τ correspond to the normal and the tangentiel components. The sign + and − corre-
spond respectively to the magnetized material and air. The magnetic continuity conditions are:

B+n = B
−
n

H+τ = H
−
τ

(3.11)

Using Eq. 3.11, Eq. 3.9 and Eq. 3.10 become:

F↑ =


−

�
B+τ
�2

2μ0
+
μ0

2

�
H+τ

�2

n↑ (3.12)

F↓ =


−

�
B+τ
�2

2μ0
+
μ0

2

�
H+τ

�2

n↓ (3.13)

Now working in the z plane, the total magnetic tension force (Fig. 3.3) applied on the upper
and the lower surfaces is given by:

qz(,
h

2
) =

∫ h
2

0

�
ƒz−mg(, z)dz + Fz−mg(,

h

2
)
�
dz (3.14)
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qz(,−
h

2
) =

∫ 0

− h
2

�
ƒz−mg(, z)dz + Fz−mg(,−

h

2
)
�
dz (3.15)

ƒz−mg and Fz−mg are the z components of the volume and surface forces fmg and Fmg
respectively. Using Eq. 3.5, Eq. 3.6, Eq. 3.12 and Eq. 3.13, Eq. 3.14 and Eq. 3.15
become,

qz(,
h

2
) =

1

2
Bz(,

h

2
)Mz(,

h

2
) − 1

2
H(,

h

2
)M(,

h

2
) (3.16)

qz(,−
h

2
) =

1

2
Bz(,−

h

2
)Mz(,−

h

2
) − 1

2
H(,−

h

2
)M(,−

h

2
) (3.17)

In general, when the surface magnetic field is horizontal, the transverse components Bz, Mz
and Hz is neglected. Furthermore, for a uniform magnetiz ation in the  direction, the trans-
verse forces become:

qz(
h

2
) = − 1

2
H(

h

2
)M(

h

2
) (3.18)

qz(−
h

2
) = − 1

2
H(−

h

2
)M(−

h

2
) (3.19)

We also define the axial load N applied on the plate due to the Maxwell’s stresses:

N() = −
∫ L



∫ h
2

− h
2

ƒ−mg(, z)dzd ≈ 0 (3.20)

ƒ−mg and F−mg are the  components of the volume and surface forces fmag and Fmag
respectively.
The total Maxwell force contribution shown in Eq. 3.18 and Eq. 3.19 is negligible in front of
the magnetostriction for the considered configuration. For a magnetic structure without any
airgap, the magnetostriction is the only magnetic source of vibration.

qz



z

Fig. 3.3 Balance of magnetic loads.
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ƒMAXH

Airgap

Fig. 3.4 Maxwell surface force in the airgap between two magnetic materials.

3.3.2 Application on a Structure with Airgap
Now considering a structure with an airgap, an in-plane magnetic field is applied on the struc-
ture’s surface. A significant Maxwell force is generated in the interface between the material
and the air as shown in Fig. 3.4.
In this case, due to the surface magnetic field and the diffusion behavior described in chapter
2, an induction gradient is obtained (colored cross-section in Fig. 3.4) and it is responsible
for the generation of a Maxwell force’s gradient (arrows in Fig. 3.4). The Maxwell force per

surface unit ƒem is equal to
B2

2μ0
. The global surface force for a plate with a thickness h and a

width b is given by:

ƒem(t) = b
∫ h

2

− h
2

B2

2μ0
(z, t)dz = bh

< B2 >

2μ0
(t) (3.21)

For a specific space position, the Maxwell force is proportional to the square of the induction;
a parabola is obtained. However, at the macroscopic scale (Eq. 3.21), the parabola includes
a phase shift called the magneto-mechanical hysteresis. It is due to the diffusion effect gener-
ated in the cross section. In fact, the induction distribution in the thickness is non-uniform as
mentioned in chapter 2 due to the presence of the eddy currents and the dynamic property Λ,
and as shown Fig. 3.4. Using the diffusion equation analysis, the time dependent B2(z, t) can
be obtained from B(z, t). Then, B2(z, t) is averaged and plotted as function of the average of
B(z, t). The calculation strategy is the same as the one performed in section 2.5.3 of chapter
2. The calculated local induction B(z, t) is given by:

B(z, t) = |B̃(z)|cos(ωt + φ) (3.22)

And the time dependent average of the squared induction becomes:

< B2 > (t) =
1

h

∫ h
2

− h
2

B2(z, t)dz (3.23)

The difference between the squared average induction and the average of the squared induc-
tion, showing the effect in the mesoscopic and the macroscopic scales is illustrated in Fig.
3.5. It is shown that the square of the average is different than the average of the square:

< B2 > 6=< B >2 (3.24)
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Fig. 3.5 Calculation of the magnetic force behavior at the mesoscopic (red) and the macroscopic (blue)
scale for 1 T, 1500 Hz and Λ = 60 μm.

A change in the force amplitude is noticed with a factor β and the generation of a time delay
τd between the strain and the induction. The relationship between the Maxwell force ƒem and
the average induction is given in the following macroscopic first order differential equation for
a specific induction amplitude and frequency:

ƒem + τd
dƒem

dt
= β

< B >2

2μ0
(3.25)
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(a) On the permeability μ at 1 T, 1,500 Hz and
Λ =50 μm.
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(b) On the Damping property Λ at 1 T, 1,500 Hz and
μr = 16,000.

Fig. 3.6 Calculation of the magnetic force dependence on the magnetic properties.

Theoretical calculation of the amplification factor β
Based on the linear study performed on the diffusion in section 2.5.3. In this part, the average
squared induction is expressed as function of the squared average induction. Combining Eq.
2.58 and Eq. 2.59, one gets:

B̃(z)

B̃
=
h

2

cosh [(k+ + jk−) z]

sinh
�
(k+ + jk−) h2

� (3.26)
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The squared modulus and the angle are:

Mod(z) =
h2

4

�
k2+ + k

2
−
� cosh2 (k+z) − sin2 (k−z)
cosh2

�
k+

h
2

�
− cos2

�
k− h2

� (3.27)

and

ϕ(z) = tn−1
k+

k−
− tn−1

tnh
�
k+

h
2

�

tn
�
k− h2

� + tn−1 (tnh(k+z) tn(k−z)) = ϕ1 + ϕ2(z) (3.28)

The time response of the squared induction at a position z is:

B2(z)

B2
= Mod(z)

�
1 + cos(4πƒ t + 2ϕ1 + ϕ2(z)

2

�

=
h2

8

�
k2+ + k

2
−
�
)
cosh2 (k+z) − sin2 (k−z)
cosh2

�
k+

h
2

�
− cos2

�
k− h2

�
 
1 + cos(4πƒ t + 2ϕ1)

1 − tnh2(k+z) tn2(k−z)
1 + tnh2(k+z) tn2(k−z)

!

− sin(4πƒ t + 2ϕ1)
2 tnh(k+z) tn(k−z)

1 + tnh2(k+z) tn2(k−z)
(3.29)

Average the squared induction:

< B2 >

B2
=
h2

8

k2+ + k
2
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cosh2
�
k+
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2

�
− cos2

�
k− h2

�
�
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+
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h/2 +

k+ cos(k−h) sinh(k+h) + k− cosh(k+h) sin(k−h)
2(k2+ + k

2
−)

�
cos(4πƒ t + 2ϕ1)

−
�
k+ sin(k−h) cosh(k+h) − k− sinh(k+h) cos(k−h)

2(k2+ + k
2
−)

�
sin(4πƒ t + 2ϕ1)

�
(3.30)

< B2 >

B
= α (0 + 1 cos (4πƒ t + 2ϕ1) + 2 sin (4πƒ t + 2ϕ1)) (3.31)

The amplification factor β is given

β = α
Ç
21 + 

2
2 =

h

4

Ç
k2+ + k

2
−
q
[k+h + cos(k−h) sinh(k+h)]2 + [k−h + sin(k−h) cosh(k+h)]2

coshk+h − cosk−h
(3.32)

Impact of the Diffusion at the Macroscopic Scale
The effect of the magnetic parameters (the relative permeability μr = μ/μ0 and the dynamic
property Λ) on the B-squared response in the linear case is investigated in this section. We
consider the following reference parameters: the thickness h =0.27 mm, the average induc-
tion magnitude |B̃ | =1 T, the induction angle 0 rad and the electrical conductivity σ =2.106

(Ω.m)−1. Fig. 3.6a and Fig. 3.6b show the butterfly loops of the averaged squared induction
as function of the average induction.
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Fig. 3.7 Dependence on the permeability at 1 T and Λ = 50 μm. [ ƒ = 500 Hz ƒ = 1,500 Hz
ƒ = 3,000 Hz ƒ = 5,500 Hz]

Fig. 3.7 plots the permeability effect on the force peak value, the amplification factor β
and the time delay for different frequencies. Fig. 3.8 plots the Λ effect on these properties.
The magnetic properties modify the loop’s width and maximal amplitude. The increase of the
permeability increases the loop’s amplitude in all cases. In parallel, the amplification factor β
increases with the permeability. As for the loop’s hysteresis (time delay), it first increases till
reaching its maximum and it then decreases for the 500 Hz and the 1,500 Hz frequencies. For
higher frequencies, the delay decreases. We notice that the increase of the frequency shifts
the maximum of the delay to the lower values of μr .
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Fig. 3.8 Dependence on Λ at 1 T and μr = 5,000. [ ƒ = 500 Hz ƒ = 1,500 Hz ƒ = 3,000
Hz ƒ = 5,500 Hz]

On the other hand, the amplitude increases to a maximum than decreases for frequencies
500 Hz and 1,500 Hz. It decreases for higher frequencies. We also notice a shift to the left of
the maximum with respect to Λ. As for the amplification factor β, it increases with Λ for low
frequency 500 Hz and it decreases with Λ for higher frequencies. In addition, the increase of
Λ reduces the loop’s width in all cases till reaching zero.
At low Λ values (< 150 μm), the peak increases with the frequency, the amplification factor
and the time delay decrease. At high values of Λ (> 150 μm), the peak, amplification factor
and time delay become the same and the diffusion effect disappears for the different frequen-
cies.
This study is important when dealing with laser treatment that modifies the magnetic prop-
erties μr and Λ, responsible for the improvement or the deterioration of the Maxwell force in
airgaps.
All these results show the importance of the diffusion on the Maxwell force response in the
airgap and reveal the critical difference between the square of the average induction and the
average of the squared induction. The diffusion also takes effect on the magnetostriction as
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described in the next section.

3.4 Magnetostriction: Microscopic Approach

3.4.1 Static Behavior
Magnetostriction is a strain induced by the magnetization phenomenon. It is caused by the de-
formation of the magnetic domains. As explained in section 1.3 of chapter 1, magnetostriction
is a coupling property to the generation of a magneto-elastic energy when an elastic medium
is magnetized. At equilibrium, the magnetostriction tensor dependent on the domain’s cosine
director vector [α1, α2, α3] and characterized by the magneto-elastic properties λ100 and λ111
is given by:

[ε] =
3

2



λ100

�
α21 −

1
3

�
λ111α1α2 λ111α1α3

λ111α2α1 λ100
�
α22 −

1
3

�
λ111α2α3

λ111α3α1 λ111α3α2 λ100
�
α23 −

1
3

�


 (3.33)

Considering the particular case were only parallel and perpendicular domains are present,
the deformation observed in the longitudinal direction α1 = 1, α2 = 0 and α3 = 0 gives the
following tensor:

[ε]0 =



λ100 0 0
0 −λ100/2 0
0 0 −λ100/2


 (3.34)

Here the property λ111 disappears due to the orthogonality between domains. But in reality,
inclined domains are present and the λ111 contributes to the magnetostriction expression. In
order to understand the magnetostrictive behavior when a magnetic field is applied, the same
domain structure is considered as illustrated in Fig. 3.9.

(1)

(2)
(3) (4) (1)

(2)(3) (4)



g


z

y

H

Fig. 3.9 Magnetization and Magnetostriction of a magnetic domain with 180◦ and 90◦.

Considering the strain tensor at equilibrium (Eq. 3.34), the initial global deformation tensor
can be obtained using the combination with volume fractions without magnetic field applica-
tion:

< ε0‖ >=
∑
α
ƒαεα = (ƒ0‖ − ƒ0⊥/2)λ100 = (1 −

3

2
ƒ0⊥)λ100 (3.35)
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When a magnetic field is applied, the same approach applied for the magnetization is pre-
sented here for the magnetostriction based on the volume fraction variation with the energy.
Using the initial fraction volumes in Eq. 2.10, the total magnetostriction becomes:

< ϵ0‖ > (H) =
ƒ0‖ cosh(Asμ0MsH) − ƒ0⊥/2
ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥

λ100 (3.36)

The magnetization is an odd function because the same direction volume fractions are sub-
stracted; a line is obtained in the linear region. However, the magnetostriction is an even
function because the same direction volume fractions are added up; a parabola is obtained in
the linear case. Its linearization using a second order Taylor development gives the following
parabola equation:

ϵ‖ − ϵ0‖ ∼
27χ20
2M2s

ƒ0⊥(1 − ƒ0⊥)λ100H2 (3.37)

Using the magnetization linear equation (Eq. 2.12), the previous equation can be written as
function of the magnetization as:

ϵ‖ − ϵ0‖ =
3

2

ƒ0⊥
1 − ƒ0⊥

�
M‖
Ms

�2
λ100 (3.38)

Eq. 3.38 sets a microscopic relationship between the magnetostriction and the magnetization
for an oriented structure in the linear case where the walls displacement is considered. The
magnetostriction is an even function of the magnetization in the linear case. Furthermore,
an initial magnetostriction exists at rest before magnetization as shown in Eq. 3.35 and a
magnetization dependent magnetostriction appears as shown in Eq. 3.38. Now considering
B = μ0M and Js = μ0Ms for magnetization in the linear case Eq. 3.38 can be written as function
of B2/2μ0, by analogy to the Maxwell’s force:

ϵ‖ − ϵ0‖ =
ƒ0⊥

1 − ƒ0⊥
3μ0λ100

J2s

B2‖
2μ0

(3.39)

The following parameter is introduced:

P‖ =
1 − ƒ0⊥
ƒ0⊥

J2s
3μ0λ100

(3.40)

P‖ is defined as the magnetic modulus that links the strain to the magnetic stress. A static
magneto-elastic relation is obtained between the induction and the induction strain:

ϵ‖ − ϵ0‖ =
B2‖

2μ0P‖
(3.41)

The increasing fraction of the 90◦ domains, increases the magnetostriction level and decreases
the modulus. Based on Eq. 3.41, the magnetic modulus P‖ varies in the same way as the
relative permeability in the linear case. Therefore, the reduction of the closure domains frac-
tion improves the permeability and reduces the magnetostriction. Now considering the case
of domains rotation and assuming that the walls displacement phenomenon is achieved, one
single domain is considered as shown in Fig. 3.10.
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Fig. 3.10 Domains rotation phenomenon (a) After walls displacement (b) Total rotation (Final state). (
- - - - Shape before rotation)

An angle of cosine equal to β is formed between the fix applied magnetic field and the
domain’s orientation. In the magnetic field direction, the magnetization was initially equal to
< M1 >= βMs. But after the domains rotation, it becomes < M2 >= Ms. As for the deformation,
when the domain rotates, it shrinks from a distance  to a distance β [37, 5]. The deformation
before (1) and after (2) domains rotation is given in the magnetic field direction by:

< ϵ1 >= λ100 (3.42)

< ϵ2 >= βλ100 (3.43)

Therefore, in the domains rotation case, the variation of the deformation with the magnetiza-
tion is linear and negative:

dϵ‖
dM‖

= − λ100
Ms

(3.44)

dϵ‖
dB‖

= − λ100
Js

(3.45)

In this case, the material shrinks with the domain’s rotation in a linear way. The saturation is
obtained when the magnetization is aligned with the magnetic field.

3.4.2 Dynamic Behavior: Inclusion of the Microscopic Damping
Similar to the dynamic microscopic analysis for the magnetic behavior, a mechanical damping
is present in the linear region due to the magnetization process. In fact, the coupling between
the motion in a direction  and the induction in the perpendicular directions generates a
conducting current density dependent on the velocity of the structure and producing a velocity
dependent Lorentz force [48]. In this case, we are interested in the motion in the  direction
with a velocity ‖. The generated current density is obtained due to the magnetization in the
transverse directions due to the 90◦ domains (B⊥). The generated current density j in the z
direction is given by (for a velocity in the parallel direction ‖):

j = σ(v× B)z = σ(‖B⊥) (3.46)

A velocity dependent Lorentz force is also obtained in the  direction (for a velocity in the
parallel direction ‖):

ƒ L = σ [(v× B) × B] = σ‖B2⊥ (3.47)
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The corresponding dissipation energy is given by:

EL = ƒ L.‖ = σB2⊥
2
‖ = σJ

2
s ƒ
2
⊥

2
‖ (3.48)

The strain and the velocity at this level can be connected using the domain’s length :

‖ = .
dϵ‖
dt
+
d

dt
.ϵ‖ (3.49)

Based on the fact that the domains length rate is not considered in this study, the previous
equation becomes:

‖ = .
dϵ‖
dt

(3.50)

The transverse fraction volume is given by:

ƒ⊥ =
ƒ0⊥

ƒ0‖ cosh(Asμ0MsH) + ƒ0⊥
(3.51)

A linearization of Eq. 3.51 using the second order Taylor development gives:

ƒ⊥ ∼ ƒ0⊥ −
9χ20
M2s

ƒ0⊥(1 − ƒ0⊥)H2 = ƒ0⊥ −
ƒ0⊥

1 − ƒ0⊥

�
M‖
Ms

�2
(3.52)

Using Eq. 3.52 and Eq. 3.50, Eq. 3.48 becomes:

EL = σJ2s (ƒ
0
⊥)
2

�
1 − 1

1 − ƒ0⊥

�
M‖
Ms

�2�2
2

�
dϵ‖
dt

�2
(3.53)

3.4.3 Energy Contributions and Behavior Law
Based on the previous analysis, the different energy contributions are presented. In fact,
considering a local analysis that does not take into account the inertia, the magneto-elastic
energy Eme supplied due to the magnetization is partially converted into an elastic energy Ee
and the second part is dissipated EL due to the Lorentz force.

Eme = Ee + EL (3.54)

In the studied case, the energy contributions per unit volume in the longitudinal direction are
given by:

Eme =
2μ0b1

J2s

ƒ0⊥
1 − ƒ0⊥

B2‖
2μ0

ϵ‖ (3.55)

Ee =
1

2
Eϵ2‖ (3.56)

E being the Young modulus and b1 the magneto-elastic coupling modulus presented in Ap-
pendix ??.

EL = σJ2s (ƒ
0
⊥)
2

�
1 − 1

1 − ƒ0⊥

�
B‖
Js

�2�2
2

�
dϵ‖
dt

�2
(3.57)
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The second order equation that describes the magneto-mechanical dynamic behavior is ob-
tained using the Hamilton’s principle:

2μ0b1

J2s

ƒ0⊥
1 − ƒ0⊥

B2‖
2μ0

= Eϵ‖ + σJ2s (ƒ
0
⊥)
2

�
1 − 1

1 − ƒ0⊥

�
B‖
Js

�2�2
2
dϵ‖
dt

(3.58)

Dividing Eq. 3.58 by the coefficient
2μ0b1

J2s

ƒ0⊥
1 − ƒ0⊥

one gets:

B2‖
2μ0

=
1 − ƒ0⊥
ƒ0⊥

EJ2s
2μ0b1

ϵ‖ +
σJ4s 

2


2μ0b1
ƒ0⊥(1 − ƒ0⊥)

�
1 − 1

1 − ƒ0⊥

�
B‖
Js

�2�2 dϵ‖
dt

(3.59)

The magnetic modulus P‖ from Eq. 3.40 is obtained in Eq. 3.59:

P‖ =
1 − ƒ0⊥
ƒ0⊥

EJ2s
2μ0b1

=
1 − ƒ0⊥
ƒ0⊥

J2s
3μ0λ100

(3.60)

where λ100 =
2b1

3E
. We also define a damping factor η‖ given by:

η‖ =
σJ4s 

2


2μ0b1
ƒ0⊥(1 − ƒ0⊥)

�
1 − 1

1 − ƒ0⊥

�
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Js

�2�2
(3.61)

The domains length  can be written in a more concrete way using the domains density n
the projected surface of the transverse domains S⊥.

 =
1

nS⊥
(3.62)

The Lorentz delay is given by:

τΛ =
η‖
P‖
=

σJ2s
En2S

2
⊥

�
ƒ0⊥
�2 �

1 − 1

1 − ƒ0⊥

�
B‖
Js

�2�2
(3.63)

The delay τΛ increases with the transverse domains volume fractions. Furthermore, the
magneto-mechanical delay depends on the induction and the domains length. An increas-

ing induction decreases slightly the product

�
1 − 1

1 − ƒ0⊥

�
B‖
Js

�2�2
but increases much more the

square of the domain’s length  and eventually decreases the domains density n. Therefore,
the Lorentz delay increases with the induction. τΛ also increases with the electrical conductiv-
ity, and decreases with the Young modulus. On the other hand, Eq. 3.59 becomes:

B2‖
2μ0P‖

= ϵ‖ + τΛ
dϵ‖
dt

(3.64)

A first order magneto-mechanical behavior law is obtained between the strain and the squared
induction. This is a Kelvin-Voigt rheological model that includes a magnetic conservative elas-
ticity and a damping factor.
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3.5 Magneto-Elasticity: 1-D study

3.5.1 Mesoscopic Scale
Considering the 1-D magnetic problem developed in Chapter 2, a plate is subjected to a uni-
form magnetic field. Taking into consideration the magnetization in the longitudinal direction,
a symmetry is obtained with respect to the z plane and the y-dimension is removed. We
define the magneto-elastic linear relation in the static mode given by:

λ(z) =
1

2μ0P
B2(z) (3.65)

λ is the local magnetic induced strain in the  direction due to the presence of the mag-
netic field. In the linear case, the relation between the equivalent strain and the induction
is quadratic. When taking into account the damping delay τΛ due to the microscopic Lorentz
force, and based on the homogenization study in Eq. 3.64, the behavior follows a first order
dynamic law given by:

λ(z, t) + τΛ
dλ

dt
(z, t) =

1

2μ0P
B2(z, t) (3.66)

3.5.2 Semi-Mesoscopic Scale
When studying plates, its is impossible to measure or analyze the strain variation in the cross-
section because of the thin characteritic of the thickness in comparison with the width and the
length. Therefore, the strain measurements and the identification cannot be performed at the
local mesoscopic scale described in 3.5.1. The strain is integrated through the thickness using
Eq. 3.67 that represents the magneto-elastic behavior in a 1-D case for a magnetic plate.

ϵms(t) + τΛ
dϵms

dt
(t) =

1

2μ0hP

∫ h
2

− h
2

B2(z, t)dz =
1

2μ0P
< B2 > (t) (3.67)

ϵms is the average induced axial strain in the  direction.

3.5.3 Macroscopic Scale
As shown in Eq. 3.67, the magnetic induced strain depends on the average of the squared
induction. However, as described in details in section 3.3.2. The average of the square induc-
tion generates an amplitude amplification β and a time delay τd, in addition to the microscopic
delay due to the eddy current in the magnetostriction case. Therefore, in order to develop a
macroscopic magneto-mechanical law, the diffusion effect is included and the relation be-
tween the observed strain ϵms and the observed average induction < B > given by:

τ
dϵms

dt
+ ϵms =

1

2μ0Q
< B >2 (3.68)

The macroscopic model includes the following variables:

� The amplitude factor Q that replaces P. This factor includes next to the magnetic modulus
P, the amplification due to the diffusion effect. We define the amplification factor as
β = P/Q. We call Q the apparent magnetic Young modulus.

� The time delay τ that shows the phase shift between the induction and the strain, and is
responsible of the magnetostriction hysteresis and it is due to both the diffusion induced
delay τd and the microscopic Lorentz force delay τΛ.
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Fig. 3.11 illustrates the modeled butterfly loops as function of the macroscopic magneto-
mechanical parameter Q and τ and as function of the frequency. The increase of the magnetic
modulus decreases the strain amplitude, the increase of the delay τ and the frequency de-
creases the amplitude and increases the butterfly loop’s width.
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(a) Variation with the apparent magnetic modulus
Q.
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Fig. 3.11 Modeling of the magneto-elastic dynamic behavior (Reference values: Q = 100 GPa, τ = 0.05
ms and 500 Hz).

3.6 Magneto-Elasticity: Generalization

3.6.1 Analogy with the Elasticity
Based on the 1D modeling, one can generalize the magneto-elastic behavior by performing an
analogy with the elasticity in mechanics and the plates theory. This is performed by expressing
the relationship between the magnetic induced strain and its equivalent stress. In fact, when
the material is constraint free, the magnetization induces a magnetic strain. However, when
the material is constrainted (for example clamped) , a stress equivalent to the induced strain
is generated. In order to make a similarity with the Maxwell’s stress, we consider the following

62



Delivrable 3.3
Magneto-mechanical dynamic modeling

3-D stress vector with Voigt notations in the y plane:

σmg =
�
σ σyy σzz τy τz τyz

�T = 1

2μ0

�
B2 B2y B2z BBy BBz ByBz

�T
(3.69)

Where σ, σyy and σzz are the axial stresses along , y and z axis respectively and τy, τz
and τyz are the shear stresses in y, z and yz planes respectively.
The corresponding strain vector is given by:

λ =
�
ϵ ϵyy ϵzz γy γz γyz

�T (3.70)

Where ϵ, ϵyy and ϵzz are respectively the axial strain components along , y and z axis, and
γy, γz and γyz are respectively the shear strains along y, z and yz planes.

3.6.2 Anisotropic Behavior
The magnetic induced strain called magnetostriction can be considered as if it was generated
by an equivalent magnetic stress vector; we define a stiffness matrix P equivalent to the
elastic matrix in mechanics, linking the stress to the strain:

σmg = Pλ =




P Pyy Pzz Py Pz Pyz
Pyyyy Pyyzz Pyyy Pyyz Pyyyz

Pzzzz Pzzy Pzzz Pzzyz
Pyy Pyz Pyyz

sym. Pzz Pzyz
Pyzyz







ϵ
ϵyy
ϵzz
γy
γz
γyz




(3.71)

Pjk presents the magneto-elastic coupling property that connects the equivalent magnetic
stress in the k plane to the magnetostriction in the j plane. Eq. 3.71 presents the static
magneto-elastic behavior [32]. It includes the anisotropic behavior. Similarly to the magne-
tization, the magnetostriction behaves in a different way in each direction due to the grain
orientation and the easy axis magnetization. The magneto-elastic anisotropy is less important
in the case of non-grain oriented materials where the magnetization can easily occur in any
direction. In this case, an isotropic aspect of Eq. 3.71 becomes:

σmg = Pλ =




P11 P12 P12 0 0 0
P11 P12 0 0 0

P11 0 0 0
P11 − P12

2
0 0

sym.
P11 − P12

2
0

P11 − P12
2







ϵ
ϵyy
ϵzz
γy
γz
γyz




(3.72)

Where P11 =
P

1 − ξ2 and P12 =
ξP

1 − ξ2 . P is the isotropic magnetic Young modulus, and ξ is the

isotropic magnetic Poisson ratio.

63



Delivrable 3.3
Magneto-mechanical dynamic modeling

3.6.3 Application to the theory of Plates
A plate is a mechanical structure that has a small thickness compared with the planar dimen-
sions (length and width). The thickness to width ratio of a plate must be less than 0.1. The
considered stress and strain components are in-plane terms in the y plane. The stresses
components generate the so-called in-plane load resultants defined by:



N
Ny
Ny


 =

∫ h
2

− h
2



σ
σyy
τy


dz = 1

2μ0

∫ h
2

− h
2




B2
B2y
BBy


dz (3.73)

In a more general case, a transverse response occurs due to the presence of resultant mo-
ments: 


M
My
My


 =

∫ h
2

− h
2



zσ
zσyy
zτy


dz = 1

2μ0

∫ h
2

− h
2




zB2
zB2y
zBBy


dz (3.74)

In the case of easy-direction magnetization, the global magneto-mechanical behavior is similar
to an orthotropic plate:




N
Ny
Ny
M
My
My



=
∫ h

2

− h
2




B2
2μ0
B2y
2μ0
BBy

2μ0
zB2
2μ0
zB2y
2μ0
zBBy

2μ0




dz =




hP

1 − ξξy
hξP

1 − ξξy
0 0 0 0

hξyPy

1 − ξξy
hPy

1 − ξξy
0 0 0 0

0 0 hGy 0 0 0

0 0 0
h3P

12(1 − ξξy)
h3ξP

12(1 − ξξy)
0

0 0 0
h3ξyPy

12(1 − ξξy)
h3Py

12(1 − ξξy)
0

0 0 0 0 0
h3Gy

12







ϵ0
ϵ0y
γ0y
κ
κy
κy




(3.75)
Where κ, κy and κy are the twisting strain components along  and y axis, and γz and
γyz are the shear strain components along the planes z and yz respectively. This relation
includes magneto-elastic properties:

� P and Py are the magnetic Young moduli, analogous to the elastic Young moduli E and
Ey.

� ξ and ξy are the magnetic Poisson ratios equivalent to the elastic Poisson ratios ν and
νy.

� Gy is the magnetic shear modulus.
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Inversing Eq. 3.75, we get,




ϵ0
ϵ0y
γ0y
κ
κy
κy



=




1

hP

− ξ
hPy

0 0 0 0

− ξy
hP

1

hPy
0 0 0 0

0 0
1

hGy
0 0 0

0 0 0
12

h3P
− 12ξ
h3Py

0

0 0 0 − 12ξy
h3P

12

h3Py
0

0 0 0 0 0
12

h3Gy




1

2μ0

∫ h
2

− h
2




B2
B2y
BBy
zB2
zB2y
zBBy



dz (3.76)

As for the isotropic case, Eq. 3.75 becomes:




N
Ny
Ny
M
My
My



=
∫ h

2

− h
2




B2
2μ0
B2y
2μ0
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2μ0
zB2
2μ0
zB2y
2μ0
zBBy

2μ0




dz =


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hP

1 − ξ2
hξP

1 − ξ2 0 0 0 0

hξP

1 − ξ2
hP

1 − ξ2 0 0 0 0

0 0
hP

2(1 + ξ)
0 0 0

0 0 0
h3P

12(1 − ξ2)
h3ξP
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0 0 0
h3ξP

12(1 − ξ2)
h3P

12(1 − ξ2) 0

0 0 0 0 0
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24(1 + ν)





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ϵ0
ϵ0y
γ0y
κ
κy
κy


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(3.77)
and,



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ϵ0y
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κ
κy
κy



=


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1

hP
− ξ
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− ξ

hP

1

hP
0 0 0 0

0 0
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hP
0 0 0

0 0 0
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h3P
− 12ξ
h3P

0

0 0 0 − 12ξ
h3P
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h3P
0
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h3P




1

2μ0

∫ h
2

− h
2




B2
B2y
BBy
zB2
zB2y
zBBy



dz (3.78)

The magneto-elastic behavioral law for a plate can be written as:

λ = P−1e .NB (3.79)

λ is the magnetostriction vector, Pe is the magnetic stiffness matrix of the plate and NB is
the magnetic resultant load vector. Pe and NB correspond to the compliance matrix and the
squared induction vector in Eq. 3.78.
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3.7 Mechanical Modeling

Considering the magnetic induced deformation presented in this chapter, we introduce the
reaction of the plate to the magnetic excitation. In fact, the mechanical modeling is based on
different energy contributions:

� Excitation (Input): When a load is applied, an input mechanical stress is generated.
The corresponding energy is called the mechanical energy and it is responsible of the
mechanical excitation.

� Elasticity (Output): The response to the mechanical excitation appears in the local
deformation due to the elastic property of the material that follows the Hooke’s law.

� Kinetics (Output): In the dynamic mode, the effect of the mass and the inertia of the
structure, combined with the velocity generates a kinetic energy.

� Damping (Output): Also in the dynamic mode, one part of the provided input energy is
dissipated due to a damping property present in the material.

In this study, the considered structure for modeling the mechanical behavior is the plate, a
geometric configuration where the thickness is way smaller than the other dimension. The
strain, displacement stress and force vectors are adapted to this structure using the plates
theory in order to generate the energy formulation. Due to the 1D aspect of the magnetic
problem, the mechanical modeling is performed in the longitudinal direction. The target of
this study is to present in the simplest way a mechanical configuration that can be applied
experimentally and used for identification of the magneto-mecchanical properties presented
previously in this chapter.

3.7.1 Dynamic Equation
We consider the case where a plate with Young modulus E, a Poisson ratio ν, a density ρ,
and a length L is fixed at one end and free at the other (Fig. 3.12). A surface magnetic
field is applied uniformily on both surface sides between a position L1 and L2. The plate’s
magnetization induces Maxwell’s and magnetostrictive forces, leading a mechanical dynamic
excitation.

0 L1 L2 L

magnetic field

ƒmsσms
h

Fig. 3.12 Mechanical configuration.

As mentioned in section 3.3, the magnetostrictive effect dominates on the Maxwell’s forces.
Studying the axial case, a 1-D dynamic equation is derived using the Lagrange equation by
only considering the longitudinal displacement (, t) in the − direction and including the
boundary conditions of the fixed-free plate [49],

− E∂
2

∂2
+ c

∂

∂t
+ ρ

∂2

∂t2
= ƒms + ƒem (3.80)
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(0, t) = 0 (3.81)
∂

∂
(L, t) = 0 (3.82)

c is the damping factor, ƒms is the magnetostrictive equivalent force due to magnetostrictive
strain and ƒem is the Maxwell’s force. As mentioned earlier, the Maxwell’s force contribution
is negligible in front of the magnetostriction force in this studied case. Therefore, using Eq.
3.80, the magnetostriction effect can be directly studied in the longitudinal direction. Using
the stress-force relation, with the magnetostrictive stress σms and the strain ϵms, we obtain,

ƒms = −
dσms

d
= −Edϵms

d
(3.83)

3.7.2 Mechanical Behavioral Analysis
Eq. 3.80 includes the elastic, damping and inertial components (the left terms) resulting
from the excitation components (the right terms). We define ϵ the apparent strain directly
resulting from the displacement (t) solution of Eq. 3.80.

ϵ(t) =
∂

∂
(t) (3.84)

The apparent strain contains information concerning the magnetostriction, but also includes
the inertia and damping effect. It represents the apparent strain that is locally measured
when using a strain gauge. In the case where the inertia effect is negligible compared to the
stiffness, the apparent strain is equal to ϵms. Furthermore, ϵ describes the observed behavior
related to vibrations and noise due to the combination of the geometric conditions and the
magneto-mechanical properties. Both ϵ and ϵms are averaged through the cross section (z
independent) but they are potentially x-dependent. However, the SST gives a uniform strain in
the magnetized area through the  direction which makes the identification of local magneto-
mechanical properties easier.
The sample is discretized using the 1D Finite Element Method (FEM) by only considering the
component ̂:

M̂ ¨̂u+ Ĉ ˙̂u+ K̂û = ϵmsf̂ (3.85)

From a static point of view, using Eq. 3.85, one gets the static displacement vector us from
the static excitation vector fs (us = ϵmsK̂

−1
 .fs). The shape of the deformed sample and its

deformation are illustrated in Fig. 3.13. Three regions are distinguished: between the fixed
position and the position L1 no deformation or displacement are shown, between L1 and L2
the displacement linearly increases and the deformation is uniform, and in the free region a
constant displacement is observed with no deformation. However, for the dynamic behavior,
the shape function is modified, specially when the study is near the resonance.

0 L1 LL2

 ϵ

(a) (b)
0 L1 LL2

Fig. 3.13 Displacement and strain versus sheet’s length under static conditions.
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Then the apparent strain can be expressed as a function of the displacement mes(t) at
the end of the sample by,

ϵ(t) =
∂

∂
(t) =

mes(t)

L2 − L1
(3.86)

3.7.3 Natural, Magnetic and Mechanical Frequencies
The considered magnetic sheet is clamped at one end and free at the other. Therefore, the
th theoretical natural frequency of the structure for this mechanical configuration is given by
[50]:

ƒ =
(2 + 1)

4L

√√√E

ρ
(3.87)

Furthermore, the natural frequencies vector can also be calculated using the derived mass
and stiffness matrices.

ω2 = eg(M̂
−1
 .K̂) (3.88)

ƒ =
ω

2π
(3.89)

The calculated natural frequencies analysis is fundamental. In fact, if the mechanical excita-
tion frequency is close to one natural frequency, resonance with occur and the displacement
will strongly increase in an uncontrollable way. Therefore, the study must be performed far
from the resonance frequency in order to identify the magnetostrictive behavior. In addition,
when the excitation frequency is much lower than the fundamental natural frequency, the stiff-
ness effect is mainly dominant. In this case, the magnetostriction ϵms is equal to the apparent
measured strain ϵ, the magnetostriction can be simply identified using Eq. 3.86.

3.8 Conclusion

This chapter deals with magneto-mechanical modeling of electrical steels applied for plates
with the following originalities:

� Modeling of the Maxwell’s force in the presence and the absence of airgaps.

� Studying the effect of the magnetic diffusion on the Maxwell’s forces.

� Sensitivity of the Maxwell’s forces to the magnetic properties.

� Domain scale study of a specific structure showing the local relationship between the
induced strain and the magnetization.

� Study of the effect of the mechanical dissipation due to the microscopic Lorentz force.

� Homogenization of the static behavior at the mesoscopic scale, introducing the property
P.

� Homogenization of the dynamic damping behavior at the mesoscopic scale, introducing
the property τ.

� Analogy with the mechanical elasticity applied to plates.

� Study of the magnetic diffusion effect on the magneto-mechanical coupling, introducing
the property Q.

� Mechanical response and longitudinal vibration due to the magnetic excitation.
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This modeling strategy is a must when dealing with material’s characterization. It is useful
for identification with measurements that will be performed in deliverable 3.4. It is also a
link between the magnetic modeling introduced in chapter 2 and the mechanical modeling.
Finally, this modeling study is a must for understanding the laser treatment effect on the
magneto-mechanical behavior, due to the modification of the domains structure.
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Chapter 4

The Laser Treatment Technology

This chapter presents the theoretical physical study of the laser treatment effect on the mag-
netic structure. The adopted techniques are the ablation, scribing and irradiation.

4.1 Energy Minimization

As mentioned in chapter 1, magnetization does not occur homogeneously, it requires an en-
ergy minimization by creating a magnetic structure constituted of magnetized domains and
walls between the domains. The main energy contributions are the magnetoelastic energy, the
magnetocrystalline anisotropy energy, the magnetic exchange energy, and the magnetostatic
demagnetizing energy. For a non closure domains configuration, the demagnetizing energy
increases with the size of domains and for a closure domains configuration, the anisotropy
energy increases with the size of domains. The sum of the anisotropy and exchange energy
increases with the walls number or walls density inversely proportional to the size of domains.
As a result, the material chooses a compromise by creating domains and walls with size and
density that minimize the global energy. The aim of the first surface magnetic model presented
below is to describe this compromise and to analyze the impact of a surface laser treatment
on any improvement of this energy balance that should lead to performances enhancement.
We assume that the laser can affect very locally the magnetic polarization and permeability of
the material such that it disturbs the domains and walls by doing the two following assump-
tions:

� Laser "scribes" modify very locally the magnetic properties such that the polarization is
greatly reduced inside the affected zone (induced stress, ablation, damage, ...)

� Laser patterns create located closure domains or magnetic poles that will define one
dimension of surface magnetic domains due to an energy minimization principle.

Fig. 4.1 illustrates two magnetic images perfomed in our laboratory using a fast and practical
technique: the Magneto Optical Indicator Film (MOIF). The images show the magnetic
structure before (Fig. 4.1a) and after treatment (Fig. 4.1b). In this case, the treatment
technology is the ablation with a 500 fs pulse width. Images show the laser lines (in yellow)
and the effect domain refinement. In effect, the laser lines cut the magnetic structure in per-
pendicular to the 180◦ domains. Furthermore, the domains thickness is also reduced.
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4.2 Magnetic Poles and Equivalent Charges

A magnetic pole appears at an interface between two different materials when the angle
between the magnetic polarization and the unit vector normal to the interface is different
from zero. When the anisotropy is very strong, the material won’t create closure domains that
cost a huge amount of energy and it prefers to keep domains oriented in accordance with its
easy axis. As a consequence, magnetic poles appear at the vicinity of the area affected by
the laser (Fig. 4.2). Considering one magnetic domain that goes from one line to another,
positive magnetic poles will appear at one extremity against one line and negative magnetic
poles will appear at the other extremity against the other line. In case of irradiated, scribed
or ablated lines, we have got a succession of positive and negative magnetic poles all along
each line.

(a) Reference sample. (b) After ablation.

Fig. 4.1 Magnetic structure observation using the Magneto Optical Indicator Film technique.

Magnetic poles
configuration

Closure domains
configuration

δ



g

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.2 Impact of laser lines (in red) on the magnetic structure.
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4.3 Closure Domains

Magnetic poles contribute to a certain amount of energy called the magnetostatic demagne-
tizing energy. The latter come from the interaction at long distance between magnetic poles.
When the anisotropy of the material is not so high, and the magnetic poles are close to each
other, closure domains cost less energy than the demagnetizing energy and then the mate-
rial prefers to create closure domains at the vicinity of the area affected by the laser (Fig.
4.2). Considering one magnetic domain that goes from one line to another, opposite clo-
sure domains will appear at the two extremities against the lines. In case of scribing lines, a
succession of opposite closure domains all along each line are obtained.

4.4 Walls Pinning, Nucleation and Multiplication

Adding some scribed patterns on the surface of a materials may create some defects which
will probably affect the static motion of magnetic walls. Defects usually act as pinning sites
that prevent the walls to move at low speed and so increase what we call the static hysteresis
losses and the static coercive force. At low frequencies, the walls will jump from one defect
to another and induce additional loss. At the same time, the walls will require a highest field
to detach from one defect and contribute to the magnetization reversal mechanism. On the
contrary, some defects can become nucleation or activation sites, i.e. the location where walls
can be either created by the presence of magnetic poles or activated by the presence of small
walls around closure domains. It is then necessary to specify the optimal laser patterns type
and geometry (first lines type, width, depth and spacing) to maximize the dynamic loss reduc-
tion due to walls motion and by minimizing the static hysteresis loss increase due to pinning
effects but still favoring the walls activation and nucleation.

4.5 Laser Effect on the Magnetization and the Magnetostriction

In this section, we present the theoretical effect of the domains refinement by laser treatment
on the magnetization and the magnetostriction. Considering the domain structures shown in
Fig. 4.2, the magnetization and magnetostriction are calculated in the linear case (low in-
duction) using the microscopic analysis performed in chapters 2 and 3. Results are plotted in
Fig. 4.3 and Fig. 4.4, showing the effect of the 90◦ closure domains fraction volume on the
magnetization and the magnetostriction. A bigger fraction of 90◦ domains increases the mag-
netostriction and decreases the permeability. The best configuration corresponds to a fraction
equal to zero, where the permeability is at its maximum in the linear region. On the other
hand, the laser treatment enables a domains refinement which creates a disoriented domains.
Although the 90◦ domains fraction decreases, the domains density increases. Therefore, at
higher induction, the anisotropy energy of the closing and disoriented domains being lower,
for some domains it is even negligible (Lancet domains, spike-like domains ...) , the threshold
for triggering the rotation of the domains will be reached for a lower level of induction for
which the demagnetizing energy and the Zeeman energy are more important than the other
energies. In this case, the permeability and magnetostriction decrease at higher inductions.
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Fig. 4.3 Anhysteretic microscopic magneti-
zation for different domain structures.
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Fig. 4.4 Anhysteretic microscopic magne-
tostriction for different domain structures.

4.6 Conclusion

This chapter deals with the description of the laser treatment technology used for the improve-
ment of the magnetic and the magneto-mechanical behavior. The laser possible effects on the
magnetic structure are presented. Experimental plannings and results are revealed in deliver-
able 3.4.
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Chapter 1

Modeling and identification of static
and dynamic magnetic properties

1.1 Introduction

The purpose of this chapter is to identify the dynamic and static magnetic properties of mag-
netic sheets using a simple experimental apparatus, the Single Sheet Tester (SST). The iden-
tification is obtained using Maxwell’s equations and a special dynamic law that defines the
local behavior of the soft magnetic material. Next, the impact of the identified properties on
the dynamic response is determined. This modeling study is the key to understand the effect
of laser treatment on both the magnetic properties and the dynamic response in the mag-
netic structures. The magnetic study is eventually considered to define the relation between
the magnetic behavior and the magnetostrictive efforts, main source of noise and vibration in
electrical machines.

1.2 Electromagnetic modeling

1.2.1 Problem

A 150x150 mm2 GO FeSi electrical steel sheet is considered with the following properties:
thickness h, density ρ and electrical conductivity σ. The experiments are performed in the
Single Sheet Tester, an apparatus dedicated for the measurement of the magnetic losses and
the hysteresis. The sheet is magnetized inside the bench due to the presence of a uniform,
in-plane and cycling magnetic field in the surrounding of the sheet (Fig. 1.1). This field is
induced by the electrical currents generated in the primary coils. The problem consists in
measuring the magnetic field H(t) needed to magnetizes the sheet with a specific average
induction B(t) imposed by the user with a specific magnitude (induction level), frequency
and signal shape. The latter is determined by the secondary coils of the bench. Fig. 1.2 shows
the measured signals (applied magnetic field and average induction); a time delay is noticed
between the two signals, representing the magnetic losses and hysteresis. The collected data
are not able to give local information concerning the magnetic variables; then an identification
of the measurements with a specific diffusion model is performed for this purpose, deriving at
the meanwhile the static and dynamic properties to fit the model with the experiments.
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Fig. 1.1 Magnetization process in the SST
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Fig. 1.2 Transient signals collected from the SST measurement.

1.2.2 Magnetic modeling: the Diffusion Equation
The electromagnetic behavior at the local space of the sample is modeled using the Maxwell’s
equations (Eqs. 1.1) that include space and time dependency.

rot(H) = J rot(E) = − ∂B
∂t

(1.1)

J, E, B and H are the local vectors that correspond to the current density, the electrical field,
the magnetic flux density and the magnetic field respectively. The problem presented in 1.2.1
reduces the complexity of the model to a 1-D analysis thanks to different contributions and
assumptions:

1. The geometric symmetry with respect to the y plane in the SST.

2. The in-plane dimensions are more significant than the thickness.

3. The symmetric applied magnetic field with respect to the -axis.

4. The uniform magnetic field in the  direction.

5. The magnetic field is applied in the direction of lamination; the induced flux density is
parallel to the magnetic field.

As a result, the magnetization occurs in the  direction and varies in the cross-section of the
sheet (z direction). Considering a linear electrical behavior (J = σE), the complex Maxwell’s
equations are reduced to a one-dimensional diffusion equation (Eq. 1.2), including the eddy
current losses generated by the electromagnetic energy interchange. The equation correlates

5



Delivrable 3.3
Magneto-mechanical dynamic modeling

two local variables: the local magnetic field H(z, t) and the local flux density B(z, t). The
solution requires a magnetic behavioral law that correlates locally the two variables.

∂2H(z, t)

∂z2
= σ

∂B(z, t)

∂t
H(± h

2
, t) = H(t) (1.2)

1.2.3 Dynamic behavioral law
The dynamic law behavior considered by Maloberti et al. [1] is adopted in this study. It includes
the static behavior represented by the permeability of the material μ and a dynamic behavior
modeled with a macroscopic dynamic property Λ that homogenizes and includes microscopic
processes related to domains and walls.

H(z, t) = Hstt(z, t) + Hdyn(z, t)

H(z, t) = μ(B)−1B(z, t) + σΛ2(B,
∂B

∂t
)
∂B(z, t)

∂t

(1.3)

The law can be separated into static Hstt and dynamic terms Hdyn. The static contribution is
conservative and represents the anhysteretic behavior independent of the exciting frequency;
it follows a generally static non-linear law μ(Hstt) = B(Hstt)/Hstt. Meanwhile, the dynamic
term represents the dissipation generated by the walls mobility and the domains size; the
application of a local magnetic field does not contribute to an instantaneous magnetization
of the material; a time delay is observed between the field and induction due to the domain
structure leading to dynamic excessive magnetic losses in addition to the eddy current losses.

1.2.4 Analytical solution
The analytical solution of the diffusion equation (Eq. 1.2) with constant linear magnetic be-
havior (Eq. 1.3) is proposed. Assuming that the static and dynamic properties described in
Eq. 1.3 are independent of the magnetic variables, the diffusion differential equation (Eq. 1.2)
can be analytically solved due to the linearity of both the model and the law. A transformation
of the transient equations to the frequency domains is considered and a dispersion relation is
obtained [1] using the Fourier time and space transform.

k2(1 + jσΛ2μω) + jσμω = 0 (1.4)

k is a complex number in the form k = k− − jk+ ,

k±(μ,Λ, σ,ω) =

√√√1

2

�
μσω

1 + (σΛ2μω)2

��
±σΛ2μω +

q
1 + (σΛ2μω)2

�
(1.5)

The complex magnitude of the local magnetic flux density (B̃(z,ω)), solution of Eq. 2.19 can
be expressed.

B̃(z) =
μH̃

1 + σΛ2μω

cosh((k+ + jk−)z)
cosh((k+ + jk−)h/2)

= |B̃(z)|ejφ (1.6)

Therefore, the average flux density can be eventually derived.

B̃ =
1

h

∫ − h
2

− h
2

B̃(z)dz =
2μH̃

h(k+ + jk−)(1 + jσΛ2μω)
tnh((k+ + jk−)h/2) (1.7)
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The posed problem considers the determination of the applied magnetic field for a given av-
erage induction, Eq. 1.7 is inversed.

H̃ =
h(k+ + jk−)(1 + jσΛ2μω)
2μ tnh((k+ + jk−)h/2)

B̃ (1.8)

The determination of the surface magnetic field (Eq. 1.8) allows the calculation of the local
flux density’s complex magnitude using Eq. 1.6, and derive a time response of this property
(Eq. 1.9).

B(z, t) = |B̃(z)| cos(ωt + φ) (1.9)

The proposed analytical solution calculates the local dynamic behavior based on the knowl-
edge of the magnetic properties and a given average magnetic field. It is also the key to
determine the effect of the magnetic properties on the dynamic local response.

1.3 Magnetic properties identification

The signals H(t) and B(t) measured in the SST are identified with a numerical model in
order and allow the determination of the magnetic law that describes the material’s dynamic
behavior and allows the knowledge of the local variables that vary with the sheet’s cross
section. In this case, the non-linearity due to the static property specially for high inductions
do not allow the use of the analytical solution. Therefore, a numerical discretization model is
proposed.

1.3.1 Numerical Strategy
The dynamic problem (Eq. 1.2) includes a dependency with the z-direction. This constraint
is solved using the finite element discretization technique that transforms the problem to a
matrix formulation using 1-D quadratic shape functions with a 3-nodes element (Fig. 1.3). The
quadratic methodolody gives accurate result for a limited number of elements. Combining Eq.
1.2 and Eq. 1.3, the discretization is presented by the matrix system:

Uμ−1(B)B(t) + σUΛ2B(t) + σV
∂B

∂t
(t) = H(t)f (1.10)

U and V are nodal matrices and f is a nodal vector; they include the quadratic shape functions
and the geometric constraints, μ is the static property matrix and Λ is the dynamic property
matrix. B and H are discretized vectors representing respectively local flux density and field,
and H is the applied magnetic field. Eq. 1.10 is dynamically solved using a simple time
discretization (ƒ (t) = ∂ƒ

∂t (t−1)dt+ƒ (t−1)) with a constant time step dt equal to the experimental
sampling period. The starting point considers a uniform discretized vector B equal to the initial
average induction B(0).

 

Quadratic element 

with 3 nodes 

z 

Fig. 1.3 Quadratic elements discretization
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1.3.2 Static property
The identification of the static property at a specific induction magnitude corresponds to the
mid-anhysteretic curve obtained for any measured cycle. This curve is obtained by removing
the hysteresis between the signals of fig. 1.2 or by studying the magnetic behavior at very
low frequency (3 or 5 Hz). Neglecting the static losses, a mid-anhysteretic curve is obtained
as shown in fig. 1.4 independent of the dynamic behavior (frequency), but dependent on the
induction level. The static property μ(Hstt) is a non-linear parameter that directly correlates
the induction to the magnetic field in the static state μ = B/Hstt. Based on the Jiles-Atherton
model [2], the non-linear static property can be modeled using a fitting with the Langevin
function [3].

B = Bs

�
coth

�
Hstt



�
− 

Hstt

�
(1.11)

Bs and  are the model parameters. Bs is the saturation induction and  = kBT/μ0m where
kB is the Boltzmann constant, T is the temperature, μ0 = 4π.10−7H/m is the permeability of
vacuum and m is the mean effective domain size [4]. Fig. 1.5 compares the measured an-
hysteretic curve with the fitted Jiles-Atherton model and shows a very good agreement with
the measurements. However, the use of the discretized equation (Eq. 1.10) to identify the
dynamic property or to calculate the flux density vector B requires a reciprocal form of the
proposed static law (Eq. 1.11): Hstt = ƒ (B). Since the use of inverse numerical optimization
techniques for modeling this law requires high computational time. An easy-to-use approxima-
tion inverse Langevin function proposed by Jedynak [3] is a fast and accurate solving method
(Eq. 1.12).

HM(B) =
B/Bs



2.999 − 2.573B/Bs + 0.655(B/Bs)2
1 − 0.895B/Bs − 0.105(B/Bs)2

(1.12)

H(A/m)
-60 -40 -20 0 20 40 60
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(T
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-0.5

0
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1

3Hz
10Hz
50Hz
150Hz
mid curve

Fig. 1.4 Mid-anhysteretic curve at 1T induction level for a reference sample with different frequencies
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Fig. 1.5 Mid-anhysteretic curve fitting using Eq. 1.12 for 1 T and 1.5 T induction.

1.3.3 Identification of the dynamic property
The determination of the dynamic property Λ is presented in this section. This property
depends not only on the induction magnitude, but also on the frequency of excitation [1].
Therefore, the discretized diffusion equation (Eq. 1.10) is used to determine the dynamic
property, assumed constant through each measured cycle. It requires the knowledge of the
static behavior presented in the inverse Langevin equation (Eq. 1.12). Eq. 1.10 calculates
the local magnetic flux density vector B from which the average induction is directly derived

(B(t) =
∫ h
2

− h
2
Bdz). The identification of Λ consists in minimizing the error between the cy-

cle’s areas that represent the total losses contribution (Strategy 1) or in minimizing the error
between the measured and the calculated cycles (Strategy 2).

1. Strategy 1: min (
∫ T
0 H(t)dBmes(t) −

∫ T
0 H(t)dBnm(t))

2. Strategy 2: min (Bmes(t) − Bnm(t))2

It appears that strategy 2 gives more accurate fitting and needs less computational time.
Therefore, it is adopted to identify the dynamic behavior and a set of properties is obtained for
different induction magnitudes and frequencies as shown in Fig. 1.6 and Fig. 1.7. A validation
of the model is then performed by solving the direct problem using the identified properties
and the results are shown in fig. 1.8 for a reference sample and a laser treated sample. It is
shown that the cycles are steeper and thinner for the laser treatement for all inductions and
frequencies.
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1.4 Sensitivity of the dynamic response to the static and dy-
namic properties

The transient response of the flux density is calculated for different static μ and dynamic Λ
properties using the linear analytical approach developed in section 1.2.4. This parametric
study helps to understand the effect of magnetic properties and eventually the effect of the
laser treatment sensitive to the magnetic properties. The reference parameters are: thickness
h = 0.23mm, electrical conductivity σ = 2.106(Ω.m)−1. The variable parameters are the
relative permeability μr = μ/μ0 and the dynamic property Λ. The effect of the static property
μr and the dymanic property Λ in terms of magnitude and delay is observed by comparing
the local induction with the average induction with respect to the magnetic field on one hand
(Figs. 1.9 and 1.10), and with respect to the average induction on the other hand (Figs. 1.11
and 1.12). The increase of the permeability induces an increase in the dispersion of the flux
density profile (skin effect) as shown in Figs. 1.9a and 1.9b. The magnitude and the delay of
the induction with respect to the magnetic field increase. On the other hand, the decrease
of the dynamic property (domains refinement) leads to an increase in the profile’s dispersion
with respect to the magnetic field as shown in Figs. 1.10a and 1.10b. The magnitude increases
and the induction’s delay with respect to the magnetic field decreases when decreasing Λ.
Figs. 1.11 and 1.12 plot the distribution of the magnitude and the angle of the flux density in
the cross section for different values of μr and Λ and with respect to the average induction.
The increase of the permeability induces an increase in the dispersion of the flux density
magnitude profile (Fig. 1.11a) and an increase in the dispersion of the flux density phase
profile for a limit of μr = 5000 then a decrease of the profile dispersion (Fig. 1.11b). On
the other hand, the decrease of the dynamic property leads to an increase in the magnitude
dispersion with an optimum at Λ=100μm followed by a decrease (Fig. 1.12a). As for the angle
between the local and the average induction, its profile is more dispersed when Λ decreases
(Fig. 1.12b).
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Fig. 1.9 Effect of μr on the flux density distribution with respect to the applied magnetic field.
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Fig. 1.10 Effect of Λ on the flux density distribution with respect the applied magnetic field.
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Fig. 1.11 Effect of μr on the flux density distribution in the cross section.
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Chapter 2

Mechanical modeling and
identification of mechanical loads

2.1 Presentation

Loads are generated inside the SST due to the electromagnetic and magnetostrictive efforts
resulting from the magnetization process. In this chapter, these loads are identifed and esti-
mated inside the SST using several techniques. The aim of this study is to identify the effect
of laser treatment on these loads, and eventually on the creation of noise and vibration in
electrical machines. A correlation between the magnetic properties identified in chapter 1 and
the magnetic loads must be determined for this purpose. Hence, the mechanical identification
is performed in the same apparatus (the SST) where a 1-D magnetization is considered.

2.1.1 Magnetic stresses generated in the magnetized structure
The magnetic stresses and forces generated in the SST are presented in this section using the
beam’s theory. The stress components corresponding to an infinitesimal volume in the beam
are the normal stresses σ and σzz in  and z directions respectively, and the shear stress σz
in the plane z. For a magnetically isotropic material subjected to a magnetization process in
the SST, the shear stress component vanishes. As for the beam, the longitudinal component
σ is more effective than the transverse component σzz due to the geometric considerations
(the length of the plate is much larger than its thickness). Therefore, main magnetic stresses
due to either magnetostriction or Maxwell forces are the longitudinal stresses (σmg = σ). In
fact, magnetostriction is a phenomenon where the deformation of the elastic medium appears
in the presence of the magnetic field. Therefore, a strain tensor is created and the rigid contact
between the two yokes and the corners of the sheet prevents the latter from expansion. In
fact, the clamps at the corners of the sheet induce a support force that generates a uniform
stress distribution through the length of the plate. Meanwhile, the magnetic stresses resulting
from Maxwell’s forces are also found due to the electromagnetic interaction with the same
effect obtained by the magnetostriction.

The total magnetic axial effort Nmg(t) that includes both Maxwell and magnetostriction
loads is assumed to be proportional to the square of the mean magnetic flux density B(t),
considering no external mechanical stresses applied on the structure.

Nmg(t) =
∫ − h

2

− h
2

σmgdz =
∫ − h

2

− h
2

αB2(z, t)dz (2.1)
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2.1.2 Magnetic Maxwell’s Forces in SST
Mechanical volume forces resulting from the distribution of the mechanical stresses in the
geometry of the structure are related as follows [5]:

f =
� ∂σ

∂ +
∂σz
∂z

∂σz
∂ +

∂σzz
∂z

�
(2.2)

The generated efforts through the whole thickness of a plate are given by:

N =



N
M
Q


 =

∫ h
2

− h
2



σ
zσ
σz


dz (2.3)

The shear stress σz and the shear effort Q vanish and the components my and M are
removed due to the symmetry. The structure is only subjected to vertical forces ƒz:

ƒ =
∂N

∂
= 0 (2.4)

ƒz = σzz(
h

2
) − σzz(−

h

2
) (2.5)

Similarly to the strategy adopted in Section 2.1, the magnetic surface Maxwell forces gener-
ated in the beam are simulated with Altair Flux2D. These forces are the combination of the
body forces resulting from the vertical stress gradient and surface forces generated in the
material-air interface. Figure 2.1 shows their vertical uniform distribution resulting from the
distribution of H and B. The magnitude of these forces is negligible in comparison with the
axial forces and their effect on the frequency swift explained in Section 2.2.3.

Fig. 2.1 Uniform distribution of Maxwell forces (arrows) on the upper and the lower surfaces of the
magnetic sample with a symmetry around the mid-axis

2.2 Transverse Vibration Modeling

A clamped beam of length L, width b and thickness h is considered for modeling the magnetic
sheet’s mechanical setup. It has a Young’s Modulus E, a Poisson ratio ν and a density ρ. The
beam is subjected to an axial uniform and cycling magnetic load and two opposite normal
forces (Maxwell forces). The dynamic mechanical modeling of the magnetic sheet is devel-
oped using the Hamilton’s principle. Figure 2.2 illustrates the magneto-mechanical conditions
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applied on the magnetic sheet in the SST and Figure 2.3 describes the magnetic loads applied
on the sheet due to the magnetostriction.
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Fig. 2.2 A simple representation of the magneto-mechanical conditions applied on the magnetic sheet
inserted in the SST

 
 x

 z
 y

Fig. 2.3 A representation of the magnetic efforts generated in the sheet

2.2.1 Strain and Displacement Components
A thin beam is considered where the shear components are neglected. The in-plane dimen-
sions (length and width) are much larger than the thickness; only in-plane strains and stresses
are considered. In addition, the length is relatively larger than the width; the beam theory
along the length of the structure is considered. Hence, we only consider the axial strain ϵ0 and
the bending κ, and the total strain on a position (, z) is expressed as follows [6]:

ϵ = ϵ0 + zκ (2.6)

where ϵ0 is the strain component at the mid-axis (z = 0) and ϵ is the strain component at a z
distance from the mid-axis and κ, the bending component is:

κ = −
∂2

∂2
(2.7)

Considering the finite deformation theory, the axial deformation on the mid-axis is related
to the axial displacement 0 and the vertical displacement  with the following expression:[6]

ϵ0 =
∂0

∂
+
1

2

�
∂

∂

�2
(2.8)

The axial strain at a specific position z becomes:

ϵ =
∂0

∂
+
1

2

�
∂

∂

�2
− z ∂

2

∂2
(2.9)
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2.2.2 Modeling with Hamilton’s Principle
The strain energy of the plate is given by:

U =
1

2

E

1 − ν2 b
∫ L

0

∫ h
2

− h
2

ϵ2dzd =
1

2
Eb

∫ L

0


h

�
∂0

∂

�2
+
h3

12

�
∂2

∂2

�2
+
h

4

�
∂

∂

�4
+ h

∂0

∂

�
∂

∂

�2

d

(2.10)
The kinetic energy of the magnetic sheet is expressed by [6]:

T =
1

2
ρb

∫ L

0

∫ h
2

− h
2



�
∂0

∂t
− z ∂

2

∂∂t

�2
+
�
∂

∂t

�2

dzd ' 1

2
ρbh

∫ L

0

��
∂0

∂t

�2
+
�
∂

∂t

�2�
d (2.11)

The work done by the in-plane axial uniform load is:

W1 =
1

2
b
∫ L

0

∫ h
2

− h
2

σmg(z, t)
�
∂

∂

�2
dzd =

1

2
bh

∫ L

0
Nmg(t)

�
∂

∂

�2
d (2.12)

Nmg(t) is the membrane load applied on a section of the plate due to the magnetization
process; in this study, Nmg(t) is uniform through the length and is expressed by:

Nmg(t) =
∫ h

2

−h
2

σmg(z, t)dz (2.13)

σmg(z, t) is the longitudinal stress developed in the material including the magnetostrictive
and Maxwell effects described in Section 2.1.1.

Applying Hamilton’s principle δ
∫ t2

t1
(T − U − W1)dt = 0 on the different energy terms of

Equations 2.10, 2.11 and 2.12 with respect to the transverse displacement (, t), a trans-
verse vibration equation is obtained[7],

ρh
∂2

∂t2
+ E

h3

12

∂4

∂4
− Nmg(t)

∂2

∂2
= 0 (2.14)

with the following boundary conditions

(=0) = 0,(=L) = 0,
∂

∂ (=0)
= 0,

∂

∂ (=L)
= 0, (2.15)

Equation 2.14 is time and position dependent (, t). The position dependence in the -direction
is modeled with a mode shape function applied on the first mode of vibration. The shape
function ϕ() is calculated in a way to include the developed model (Equation 2.14) and the
boundary conditions (Equation 2.15). It allows a variable separation between space  and time
t on the displacement (, t):

(, t) =0(t)ϕ() (2.16)

Replacing Equation 2.16 in Equation 2.14, we obtain:

ρhϕ()
∂20(t)

∂t2
+ E

h3

12

∂4ϕ()

∂4
0(t) − Nmg(t)

∂2ϕ()

∂2
0(t) = 0 (2.17)
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A non-linear equation with linear terms is obtained. Multiplying Equation 2.17 by ϕ() and
integrating on the magnetized length of the sheet we obtain:

m
∂20(t)

∂t2
+ [k + cN(t)]0(t) = 0 (2.18)

where m = ρh
∫ L

0
ϕ2()d, k =

Eh3

12

∫ L

0

∂4ϕ()

∂4
ϕ()d and c = −

∫ L

0

∂2ϕ()

∂2
ϕ()d. m, k and c

are positive values that depend on the mechanical and geometric configurations of the struc-
ture.

Equation 2.18 is the mechanical dynamic equation that models the motion the behavior in
deflection for the magnetic plate inserted in the SST.

2.2.3 Axial Effort Calculation Using the Modal Analysis Approach
A simple and specific method for calculating of the magnetic load is presented using the modal
analysis approach. In fact, modal analysis consists of determining the natural frequencies and
the mode shapes of vibration of the magnetic sheet. It corresponds to the exciting frequency
that creates resonance on the sample. The analysis is based on Equation 2.18 by applying the
Fourier Transformation.

It can be noticed from the measurements that the acceleration (and eventually the dis-
placement 0(t)) oscillates with the frequencies ƒ , 2ƒ , ..., nƒ , where ƒ is twice as much as the
magnetic exciting frequency (ƒ = 2ƒmg) and possesses the higher contribution in amplitude
(fundamental frequency). At resonance, the oscillating frequency ƒ reaches the natural fre-
quency of vibration ƒ0 and the secondary frequency have negligible amplitudes as shown in
Figure 2.5. The displacement 0(t) can be expressed as follows :

0(t) =W0 cos(2πƒ t + φ1) (2.19)

where W0 is the amplitude of the signal that appears in the frequency spectrum and φ1 is the
phase shift.
B(z, t) is a sinusoidal signal with a frequency equal to half of the displacement’s frequency
(ƒmg =

ƒ
2 ), therefore:

B(t) = Bm cos(
2πƒ

2
t + φ2) (2.20)

where φ2 is the phase shift of the flux density’s signal.
Combining Equations 2.1 and 2.20 one gets,

Nmg(t) = αB2m cos
2(
2πƒ

2
t + φ2) =

Nm

2
[1 + cos(2πƒ t + 2φ2)] (2.21)

where Nm is the amplitude of N(t) and φ2 its phase shift. Replacing Equations 2.19 and 2.21
in Equation 2.18 and applying a Fourier transformation on Equation 2.18, a spectral analysis
is performed at the resonance frequency (ƒ = ƒ0) that corresponds to the peak amplitude ob-
tained by performing the frequency sweep explained in Section 2.2.4. The following equation
is obtained at the resonance frequency:

− ω20m + k + c
Nm

2
= 0 (2.22)
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Nm =
8π2m

c
(ƒ20 − ƒ2n ) (2.23)

where ƒn =
1

2π

√√√ k

m
is the natural frequency of the structure without magnetization. The mag-

nitude of the generated magnetic axial load can be easily determined by measuring the reso-
nance frequency ƒ0.
It can be noticed from Equation 2.23 that an increase in the resonance frequency (ƒ0 > ƒn)
corresponds to a tensile load and a decrease in the resonance frequency corresponds to a
compressive load.

2.2.4 Frequency Sweep Around the Natural Frequency
The determination of the fundamental resonance frequency ƒ0 of the structure is performed
using a sweep of the magnetic frequency ƒmg of the magnetic flux density that equals half of
the vibrating frequency of the sample. A convergence study is performed in order to deter-
mine the resonance frequency corresponding to a peak amplitude in the frequency spectrum.
The natural frequency ƒn is calculated analytically using the model described above and mea-
sured by exciting the sample without magnetization. Figures 2.4 and 2.5 show respectively the
transient and the frequency responses measured using the accelerometer at resonance fre-
quency for a maximum induction of 0.9T. As shown in Figure 2.5 the dominant peak is found at
the resonance frequency that corresponds to double the applied induction’s frequency. Once
the resonance frequency is experimentally identified, it is compared to the natural frequency
without magnetization and the maximal axial effort is identified using Equation 2.23.

Fig. 2.4 Acceleration’s transient response at
the resonance frequency

Fig. 2.5 Fast Fourier Transform (FFT) of the
measured acceleration at the resonance fre-
quency
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2.2.5 Limitations of the transverse modeling
This developed estimates in a very simple way the magnitude of the induced magnetic loads.
However, several limitations are observed using this method. First, the frequency sweep re-
quires a compromise between the precision and the time measurement consumption, because
a the frequency sweep searches for the resonance frequency that corresponds to a peak am-
plitude. On the other hand, the transverse model does not give a synchronous measurement
between the magnetic signals (induction and magnetic field) and the mechanical load be-
cause the latter is determined using a modal analysis technique and not a classic vibration in-
put/output model. Finally, this technique can be limited by the generation of surfaces stresses,
due to the transverse vibration, that modify the global dynamic behavior.

2.3 Longitudinal Vibration Modeling

2.3.1 Dynamic equation
Taking into consideration the transverse model’s limitations, a more simple approach for the
identification of magnetostrictive behavior issued from the magnetization process is consid-
ered. In fact, the cover of the SST is removed and the magnetic sheet is clamped at one end
and free at the other end as shown in Fig. 2.6. A piezoelectric accelerometer is placed at the
free end of the sheet and measures the acceleration in the sheet’s longitudinal direction. Due
to the magnetization process in the SST, the sheet is only magnetized in a specific region (Fig.
2.6) and a local magnetostrictive strain ϵms is created in this zone, depending on the induc-
tion, the Young’s modulus, magneto-elastic coupling properties and the internal mechanical
stresses. Considering a thin beam with a cross section A and a Young’s modulus E, the 1-D
longitudinal dynamic behavior is described in Eq. 2.24, where the longitudinal displacement
is considered (, t).

∫ L

0
ρA

∂2

∂t2
d +

∫ L

0
ƒ
�
d

dt

�
d

∫ L

0
EA

∂2

∂2
d =

∫ L

0
ƒd =

∫ L

0
EA

ϵms

Lmg
d (2.24)

The longitudinal equation 2.24 is discretized with the finite element method, including the
boundary condition (fixed-free). A discretized displacement vector{} is obtained with mass
M, damping C and stiffness K matrices and a discretized force vector {ƒe}; the dynamic
equation becomes:

M ¨{} + C ˙{} + K{} = {ƒe} (2.25)

Vector {ƒe} contains the magnetostriction strain coefficient ϵms, the Young’s modulus E and
the cross section A. The force is only applied on the magnetized zone.
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Lmag magnetized length 

L vibrating length 

clamped length 

piezoelectric 

accelerometer 

free end 

Fig. 2.6 Schematic representation of the longitudinal deformation due to the magnetization process in
the SST for a fixed-clamped sheet.

2.3.2 Identification for identification of the Magnetostrictive Coefficient
The identification of the magnetostrictive coefficient ϵms can be perfomed by inversing the
Eq. 2.25. In fact, the degree of freedom is equal to a certain value n, Eq. 2.25 contains
n unknown values in the discretized displacement vector {} and one unknown in the force
vector ϵms that must be identified. The problem is indeterminate since it has more unknown
(n + 1) than equations (n). Therefore, a measurement of only one displacement component
reduces the total number of unknowns and makes the problem solvable. The measurement
technique requires the use of a piezoelectric accelerometer at the free end of the structure;
the measured acceleration is integrated twice to obtain the free end displacement component.
The magnetostrictive coefficient ϵms(t) is finally determined is parallel with the measured
magnetic flux denisty B(t) and the applied magnetic field H(t).

2.3.3 Magneto-mechanical model identification
A correlation between the mechanical signal ϵms and the magnetic signal B(t) is developed.
Many studies have modeled a relation between magnetostriction and the induction at different
scales. Some models assume an anhysteretic behavior [8, 9, 10], including the dependence
of the magnetostriction on the induction and the present stresses; a direct relation between
the magnetostriction and the square of the induction is proposed. The obtained quadratic re-
lationship results from the rotation of the loal magnetization with respect to the crystal’s axis
[11]. In fact, at this scale, the local magnetization is constant in magnitude but the orientation
varies with the applied magnetic field that tends to lead the magnetization in its direction with
an energy minimization strategy.
On the other hand, other researches take into account the hysteresis effect between the mag-
netostriction and the induction [12]. In fact, each domain is deformed due to the application
of the magnetic field and the rotation of the magnetic moments. The latter is locally delayed
with respect to the applied magnetic field (approach modeled by the dynamic property Λ in
chapter 1). In addition, the presence of eddy currents delays the response of the induction
with respect to the magnetic field [13]. Therefore, the deformation is also delayed and an
hysterestic behavior is observed between the magnetic and the mechanical signals.
An empirical first order modeling approach is proposed:

τ
dϵms

dt
+ ϵms(t) =

1

P

B2(t)

2μ0
(2.26)
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τ includes the hysteresis and P is a magneto-elastic property that includes the Young’s mod-
ulus, the applied stress effect and a magneto-elastic coupling behavior. The identified prop-
erties τ and P are defined at the macroscopic scale, considering the observed variables. The
comprehension of the physical meaning of these properties requires a transition to the meso-
scopic scale where Eq. 2.26 is locally studied using the magnetic analysis developed in chapter
1: ∫ h

2

− h
2

τ
dϵms

dt
dz +

∫ h
2

− h
2

ϵms(t)dz =
∫ h

2

− h
2

B2(z, t)

2Pμ0
dz (2.27)

This approach includes the local dynamic behavior and the eddy current losses and the non-
linearty of the magnetic properties that generate harmonics in the dynamic response. This
technique helps to clarify the meaning of the identified magneto-elastic properties and to
obtain a magneto-mechanical model. The sensitivity to laser treatment will be analyzed, il-
lustrating the effect of different laser configurations on the magneto-elastic behavior. The
selection of the optimal laser treatment is based on different strategies:
- Reduction of the harmonics by obtaining linear magnetic properties.
- Reduction of the static magneto-elastic coefficient 1

P (magnitude) and increase of the damp-
ing coefficient τ.
- Consideration of a properties gradient instead of homogeneous properties.
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Introduction

This report deals with dynamic magnetic and mechanical modeling of soft magnetic materials
subject to laser treatments. First, magnetic direct modeling is performed in order to simulate
the magnetic behavior of soft magnetic plates subjected to surface uniform magnetic field.
Time response magnetic field and magnetic flux density and hysteresis are calculated, de-
pending on the thickness and the magnetic properties of the materials. An indirect modeling
is then performed in order to determine the magnetic properties of the material and its mag-
netic behavior law as a function of laser treatment and the dependent magnetic structure. It
might have an impact on the magnetic sources of vibration and the vibro-mechanical proper-
ties as well.
Next, a mechanical dynamic analysis is performed; stresses, efforts and forces through the
thickness of the plate are defined and modal analysis of the structure is developed in order to
determine the mode shapes and natural frequencies of vibrations.
Different solving tools are used; for magnetic modeling, finite element discretization on MAT-
LAB is performed, followed by time simulation with SIMULINK using Maxwell Equations, and
numerical modeling with Flux2D software on the other hand. For mechanical modeling, fi-
nite element discretization on MATLAB and time simulation on SIMULINK are developed using
Hamilton principle, and numerical validation is obtain with HyperWorks Software.
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Chapter 1

Magnetic modeling

1.1 Defining the problem

The experimental setup chosen in this thesis is a SST bench. It consists of a closed magnetic
circuit that generates a uniform, horizontal and symmetric magnetic field through both sur-
faces of the soft magnetic plate inserted in the closed circuit. Fig. 1.1 illustrates the plate
model to be solved.
The magnetic direct modeling consists in defining the magnetic flux density gradient in the
geometry of the structure with time dependency, given the different magnetic properties in-
volved in the magnetic behavior law of the material. However, the procedure here involves an
indirect problem solving. In fact, once the magnetic transient responses of the mean flux den-
sity and the surface magnetic field are measured, the magnetic properties can be calculated.
The latter allows to define the material behavior law that will be used later on for magneto-
mechanical coupling, so that the effect of magnetic properties affected by laser treatments on
the mechanical response will be analysed and interpreted.

Fig. 1.1 Magnetic plate surrounded by uniform magnetic field as obtained in the SST frame
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Fig. 1.2 Flux density response with and without consideration of the dynamic property Λ = 250μm with
magnetic field H = 1000A/m, frequency ƒ = 1500Hz, relative permeability μr = 1000 and electrical
conductivity σ = 2MS/m

1.2 Model description

1.2.1 Magnetic behavior law
The behavior law of soft magnetic material can be defined as the relation between the mag-
netic field and the flux density at a specific time and a specific point of the structure, including
static and dynamic parts as defined in Eq. 1.1 [1, 2].

H(z) =
1

μ(B(z))
B(z) + σΛ2(B(z),

dB(z)

dt
)
dB(z)

dt
(1.1)

where z is the coordinate defined in the thickness h of the plate varying from h
2 and − h

2 , B is
the magnetic flux density at position z, H is the magnetic field at position z, μ is the absolute
static permeability of the material depending on B, σ is the electrical conductivity considered
known and constant, and Λ is the dynamic magnetic property that includes all the variations
with time. In fact, reference to Eq. 1.1, the magnetic field generated in the plate is seperated
into two parts: a static, conservative part affected by the permeability μ and not dependent
on the time variation and a dynamic, dissipative part affected by the dynamic property Λ that
depends on time or frequency. Fig.1.2 shows the effect of the magnetic dynamic property Λ
on the time response of the flux density for a material subjected to a specific magnetic field.
In fact, mesoscopic magnetic property μ presents the ability of the material to magnetize in
the presence of magnetic field; the higher the static permeability is, the higher the magne-
tization is. On the other hand, the dynamic property Λ presents the magnetic walls density
and mobility; the higher Λ is, the lower the walls mobility or density is, leading to a more de-
layed response in magnetization as presented in Fig. 1.2 and a more dissipation of magnetic
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energy. Maloberti et al. [1] has presented, described and identified this dynamic property in
soft magnetic materials [1].

1.2.2 Diffusion equation
The magnetic modeling consists in determining the time response of the gradient of magnetic
flux density B(Ω, t), knowing the time response of the surface magnetic field H(t). In fact the
modeling consists in using the Maxwell equations that can be reduced in the SST frame to a
one-dimensional dependent magnetic flux density. The Maxwell equations can be summarized
through the thickness h of the sample, varying from − h

2 and h
2 , to the following equation [3, 4].

σ
dB

dt
=
∂2H

∂z2
(1.2)

where σ is the electrical conductivity of the material and H is the gradient of the mag-
netic field through the thickness. Using Eq. 1.2 with limit conditions imposed by the surface
magnetic field H( e2 ) = H(− e

2 ) = H(t), the magnetic flux density and the magnetic field can
be obtained if the relation between both variables is well known and defined, constituting the
material behvior law. Combining the diffusion equation Eq. 1.2 with the magnetic law behavior
in Eq. 1.1 and the boundary condition, and performing a finite element discretization one can
get the following first order equation [4]:

A(μ, z)B + C1(σ)
∂B

∂t
+ C2(Λ, μ, z)

∂B

∂t
= g (1.3)

WhereA, C1 and C2 are matrices derived from Eq. 1.2, depending on the number of elements,
the thickness and the different electromagnetic properties, and g represents the excitation
vector depending on the boundary conditions. Matrices and vectors presented in Eq. 1.2 are
well explained and defined in the previous report. Next, Eq. 1.3 is integrated in SIMULINK for
transient resolution of the magnetic flux density varying through the thickness of the sample,
and the mean magnetic flux density can be determined with time variation.

1.3 Magnetic properties determination

1.3.1 Permeability law determination
The law of permeability is determined by eliminating the effect of the dynamic part; this can
be done for very low frequencies, without taking into account the diffusion effect and the
Maxwell equation described in Eq. 1.2 because we are dealing with a static problem where we
assume that the magnetic flux density and magnetic field remain the same everywhere in the
geometry; the choice of the low frequency consists in compromising between the speed and
the precision of the measurements; in fact, the lower the frequency is, the slower the mea-
surement is or will be. On the other hand, at a certain level, the decrease of the frequency
becomes useless because the dynamic effect becomes negligible. That’s why, in our measure-
ments, 3Hz is the frequency considered for grain-oriented materials (GO) as static excitation,
and 5Hz is considered for non-oriented grain materials (NGO).
The determination of the permeability is derived from the mid anhysteretic magnetization

curve obtained seperately on each low induction cycle as shown in Fig. 1.3; in fact, different
curves are obtained for different induction levels because the permeability depends not only
on the magnetic field and flux density, but on their variation with respect to each other, with
an independence on the frequency of the exciting magnetic field or any time variation. An idea
of the permeability can also be given by determining the initial magnetization curve of each
material as shown in Fig.1.4, and by selecting the minima and maxima couples (Hm, Bm of
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Fig. 1.3 Hysteretic and mid-anhysteretic curves for a Bm = 1T induction and a frequency of 50Hz for
a non-laser treated grain-oriented material (GO)
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Fig. 1.4 Hysteresis loop at 3Hz for a grain-oriented material with different induction levels with initial
magnetization curve (in bold) obtained from maxima couples (Hm, Bm) obtained from each induction
level

each induction level to obtain a unique characteristic curve of the material.

1.3.2 Dynamic property law determination
The determination of the dynamic property with respect to the induction and the frequency
is more complicated than the determination of the permeability, because it considers the dy-
namic behavior and the diffusion effect of the magnetic flux density and the magnetic field
through the thickness of the structure. Hence, Eq. 1.1 cannot be directly implemented and
the Maxwell diffusion equation must be taken into consideration. Calculation of the dynamic
property can follow two steps. The first one considers that the dynamic property is constant
through the cycle, and an optimisation of the error between the area of the cycles for mea-
surement and simulation is considered as shown in Fig. 1.5. This strategy gives an average
dynamic property within the cycle and can help us compare the value obtained for different
laser treatments and analyze the effect of the laser treatment for this property. Next, for a
more specific study, the determination of the dynamic property as function of the flux density
and its time derivative is performed; Fig. 1.6 shows the mathematical optimization diagram
that determines the dynamic property Λ by an iteration method, starting with an initial guess.
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Fig. 1.5 Numerical strategy for determination of the mean magnetic dynamic property Λ through a cycle
of specific maximum induction and specific frequency

Fig. 1.6 Numerical strategy for determination of the magnetic dynamic property Λ law
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Chapter 2

Mechanical modeling

2.1 Brief description of the dynamic mechanical model devel-
oped

The soft magnetic plate considered for magnetic measurements has also pure mechanical
properties that define its dynamic behavior and its mode shapes and natural frequencies. In
this part, the mechanical model of vibration is presented on its own without considering the
magneto-mechanical coupling at first. The latter has been introduced during the first period
and will be developed during the next period, including the impact of the magnetic properties
on both the stiffness and damping matrices and on the excitation input vector. Using the
Hamilton’s principle that is based on energy formulation and conservation, one can derive
using the finite element discretization method, the mass matrix M , the stiffness matrix K and
the damping matrix C, using a modal analysis strategy by deterimining the eigenvalues and
the eigenvectors of the eigenproblem formulated by the Hamilton’s principle.

(−ω2M +K)∆ = 0 (2.1)

where ω2 is the eigenvalue and Δ is the eigenvector. Once the different matrices are devel-
oped from the modal analysis, a time response equation is set and solved using SIMULINK.

M
d2U

dt2
+ C

dU

dt
+KU = f (2.2)

where f is the excitation input vector and U is the displacement output vector. The model-
ing is performed on SIMULINK by transforming the second order equation to a first order one
by setting a new equation [5]:

Z =
�
U
dU
dt

�
(2.3)

dZ

dt
=
�

0 I

−M−1K −M−1C

�
Z +

�
0
f

�
=AZ + B (2.4)

Matrix A contains the modal analysis matrices (mass M , stiffness K and damping C matrices)
and matrix B contains the excitation input. B is equal to zero when no external excitation is
applied Fig. 2.1 plots the displacement response of a fixed-free plate subject to an initial
displacement at the free end with no external excitation, simulated by the model developed
on SIMULINK as shown in Fig. 2.2.
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Fig. 2.1 Displacement time response of the free end of a plate with thickness of 1mm, length of 100mm,
Young modulus of 210GP, Poisson Ratio equal to 0.3, density of 7,850Kg/m3

Fig. 2.2 Dynamic mechanical response modeling on SIMULINK
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Fig. 2.3 Mode Shape for fixed-fixed magnetic plate in Mode 1

2.2 Modal analysis and experimental strategies

In order to select the position of sensors and exciters on the top of the plate when exposed to a
uniform magnetic field, modal analysis of the plate must be performed; natural frequencies of
vibration and mode shapes for different vibrational modes. The calculation are performed with
two calculations methods; the first one must be calculated based on energy formulation and
Hamilton’s principle that derives mass and stiffness matrices of the structure for 2D geometry
in (Oz) plane and using Matlab and Simulink as numerical solving powers, and the second
one using directly HyperWorks from Altair Engineering Software for 3D geometry in (yz)
space. A fixed-fixed plate is considered with geometric properties: length L = 100mm, width
 = 150mm and thickness h = 0.5mm and mechanical properties: density γ = 7650Kg/m3,
Young Modulus E = 210GP and Poisson Ratio υ = 0.3. Results for both methods are compared
in Table 2.1. Both models are compatible on modes 1, 5 and 12 that correspond to bending in
vertical plane Oz. Other modes correspond to vibration out of plane. Mode Shapes are also
obtained, Figs. 2.3, 2.4 and 2.4 illustrate the mode shapes corresponding to flexural modes 1,
5 and 12.

Modes HyperWorks Model SALLOUM 2D Model Relative Error
1 277.05 279.9 1.03%
2 301.55
3 394.17
4 582.28
5 764.92 775.8 1.42%
6 798.36
7 883.88
8 914.62
9 1118.23

10 1301.9
11 1419.96
12 1502.45 1532 1.97%

Table 2.1 Natural frequencies(Hz) comparison between numerical simulation with HyperWorks and 2D
energy model
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Fig. 2.4 Mode Shape for fixed-fixed magnetic plate in Mode 5

Fig. 2.5 Mode Shape for fixed-fixed magnetic plate in Mode 12
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2.3 Stresses, efforts and forces in plates

In this section, a theoretical approach is presented, contributing to the design of the test
bench. This approach is mainly based on the theory of plates in order to identify the distribu-
tion of plate’s stresses and forces that are derived from the magnetization of the specimen in
the SST frame.
A plate is a three dimensional structure where the thickness is very small compared to other
dimensions.

The general stress tensor corresponding to an infinitesimal volume in a structure is:

[σ] =



σ σy σz
σy σyy σyz
σz σyz σzz


 (2.5)

where σ and σyy is the normal stresses in the  and y directions σy, σz and σyz are the
shear stresses in the planes y, z and yz.
Mechanical volumic forces are generated from the distribution of the mechanical stresses in
the geometry of the structure, and are related as follows [6]:

f = d[σ] =



∂σ
∂ +

∂σy
∂y +

∂σz
∂z

∂σy
∂ +

∂σyy
∂y +

∂σyz
∂z

∂σz
∂ +

∂σyz
∂y +

∂σzz
∂z


 (2.6)

The generated efforts through the whole thickness of a plate are given by:

N =




N
M
Ny
My
Ny
My
Q
Qy




=
∫ h

2

− h
2




σ
zσ
σyy
zσyy
σy
zσy
σz
σyz




dz (2.7)

Hence, the equivalent surface forces and moments are obtained:

ƒ =
∂N

∂
+
∂Ny

∂y
+ σz(

h

2
) − σz(−

h

2
) (2.8)

ƒy =
∂Ny

∂
+
∂Ny

∂y
+ σyz(

h

2
) − σyz(−

h

2
) (2.9)

ƒz =
∂Q

∂
+
∂Qy

∂y
+ σzz (2.10)

my =
∂M

∂
+
∂My

∂y
+
h

2
σz(

h

2
) +

h

2
σz(−

h

2
) − Q (2.11)

m =
∂My

∂
+
∂My

∂y
+
h

2
σyz(

h

2
) +

h

2
σyz(−

h

2
) − Qy (2.12)
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2.4 Interpretation of the force balance for an SST frame

In the previous section, the presentation of all the possible force that can act on the volume
of the plate was performed in order to identify their impact on the vibration. In fact, the forces
can affect the structure in two perspectives; one considering the force as an external source
of excitation and its direction of application does not vary with the dynamic of the plate, and
the other considered as a displacement dependant force, affecting the stiffness, the natural
frequencies and mode shapes of the plate.
In this section, all the possibilities that we can possibly confront in the experimental mea-
surements are offered; the aim of this theoretical interprepation leeds to the right path in the
design of the mechanical experimental bench.

2.4.1 Case of isotropic magnetic material
An isotropic material is considered, with a straight plate and a symmetric uniform magnetic
field distribution on both surfaces, respecting the setup of the SST bench adopted for magnetic
experiment. Based on Maxwell’s equations, the magnetic flux density is only z-component
dependent and directed in the -direction; hence, the only magnetic stresses derived from
Maxwell and magnetostrictive origins are σ and σzz and the only effort generated in the
plate is N. The forces applied on the structure due to the SST bench setup is ƒ and ƒz.

ƒ =
∂N

∂
(2.13)

ƒz = σzz(
h

2
) − σzz(−

h

2
) = 0 (2.14)

Theses forces only produce longitudinal vibration, with very high resonance frequencies. There-
fore, vibration will not be generated in flexural or torsional modes.
On the other hand, when the structure is excited in flexural or torsional mode, displacement-
dependent efforts are generated and affect the vibrational properties of the structure (natural
frequency, mode shapes, damping, speed, error...). In order to perceive its effect, an excita-
tion is present and the vibrational response can be obtained and analyzed as a function of the
magnetic properties induced by laser scribing.
In a SST frame with isotropic magnetic material, as shown in a previous report, shear stresses
σz and σyz are generated depending on the vibration of the structure and displacement-
dependent forces are generated from excitation of the structure:

my = hσz(
h

2
) − Q (2.15)

m = hσyz(
h

2
) − Qy (2.16)

and

ƒz =
∂Q

∂
+
∂Qy

∂y
(2.17)
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2.4.2 Excitation of the specimen inside the SST frame
Till now, the vibration of the plate is not achieved because no excitation source is defined
theoretically; only displacement-dependent forces are observed. But in reality, vibration of
the plate in the SST frame can be observed and a source of excitation is present and must be
identified and analyzed. Different assumptions are presented in the upcoming sections.

Case of initial deformation

As shown in section 2.1, the excitation of the structure is not limited to application of forces
and moments, but also on applying an initial displacement, similar to the excitation of a mass-
spring system by an initial displacement of the mass. This initial displacement is due to the
imperfection in the disposition of the plate inside the frame specially for flexible plates.

Case of anisotropic magnetic material

The effect of magnetic anisotropy of the soft magnetic structure is usually included, specially
when dealing with grain oriented magnetic materials. In fact, when the material is magnetized
with a uniform horizontal magnetic field, the magnetic flux density is not necessarily oriented
in the same direction; other components can be generated due to the orientation of the mag-
netic domains of the structure. Even in non-oriented magnetic materials, a light anisotropy
can often appear. As a result, stresses, efforts and forces can be created in other directions,
constituting a source of vibration of the structure. In these non-oriented materials, the magni-
tude of the forces produced by the anisotropy is usually low in comparison with any force that
can be applied externally, like a mechanical excitation or air gap effect.

Effect of the air gap between the plate and the core of the SST frame

A source of vibration can be generated by the presence of the air gap lack between the plate
and the core of the bench that is used to measure the magnetic parameters. In fact, the pres-
ence of a very thin layer of air creates an interface (iron/air/iron), and the Maxwell magnetic
force generated can be important, generating a vibration of the plate. However, in the SST,
no external mechanical excitation are used and no displacement should be allowed at the
air-gaps (fix-fix conditions).

Case of dissymmetry in the magnetic field generated by the SST frame

Another assumption can be treated, regarding the dissymmetry of the surface magnetic field
distribution between both sides of the plate. In fact, this dissymmetry generates a disymmetry
in the distribution of the magnetic flux density in the thickness of the plate and reference
to section 2.3, moments around y axis, and forces in the z axis are created, presenting an
excitation of the structure.

2.5 Conclusion and forthcoming steps

This report presents magnetic and mechanical modeling tools needed to determine the effect
of laser treatment on the mechanical dynamic response of soft magnetic materials. In the
upcoming studies, magneto-mechanical coupling model needs to be developed in order to
connect the magnetic and mechanical tools developed in this report. On the other hand, the
determination and the analysis of excitation sources derived from magnetic origins must be
treated based on the different assumptions presented in section 2.4.2. This study is followed
by experimental measurements for vibration. The target of all this procedure is to study
and optimize the effect of the gradient of the identified magnetic properties induced by laser
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scribing on the mechanical response of the structure. Later on, more complex cases will
be treated, including a number of superposed sheets and a technique must be adopted to
homogenize the magneto-mechanical properties for these cases.
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Chapter 1

State Of Art

1.1 Introduction

This report introduces the state of art of the thesis entitled Modeling of magnetic and
mechanical behavior with property gradients by laser scribing in non-oriented soft
magnetic materials. First, general definitions related to non-oriented ferromagnetic materi-
als are presented and a special focus is concentrated on magnetic domains and walls move-
ment. Next, researches about magnetic modeling and behavior are introduced, followed by a
presentation of the intervening electromagnetic forces and their coupling with mechanical be-
havior. Finally, the influence of laser scribing on the magnetic structure is presented to target
the goal of the thesis.

1.2 Non-Oriented ferromagnetic materials

1.2.1 Generalities
Soft magnetic materials received their name in regard their low hardness and their easiness
to reverse their magnetization. They have the capacity to concentrate the magnetic flux in
different parts of the magnetic circuits. In the low frequencies domain (e.g. the industrial fre-
quency) high permeability and magnetization at saturation and low coercitivities are required
so that the hysteresis loop becomes as narrow as possible [3]. Non-oriented materials are soft
materials that have low anisotropy; when magnetic field is applied, the material can be easily
magnetized in almost any direction and the characteristics are almost equivalent in all space
directions. Non-oriented soft magnetic metal sheets are soft, crystalline, conducting, inexpen-
sive materials, used for low frequency applications in electrical machines [4]. The Fe-Si alloy
can definitely be considered the most representative material for this class.

1.2.2 Magnetic domains
The existence of magnetic domains and wall movement must be considered when studying
the dynamic behavior of soft magnetic materials. In fact, the arrangement of the localized
magnetic moments is determined by various kinds of energies: the exchange energy, the
magnetostatic energy, the magnetocrystalline anisotropy and the magnetoelastic energy [5].
Magnetic domains are created in a way to minimize the magnetic energy of the material. In
addition, one must consider the limit between each domain where sudden transition from one
direction to another needs a big amount of exchange energy to be accomplished; a moving
wall constituted of atomic planes is created between two domains in order to allow a grad-
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ual transition of the magnetization direction between them. Bloch wall is one well-known
wall studied by F. Bloch in 1932; at each part of the wall, the density of magnetocrystalline
anisotropy energy is equal to the density of exchange energy. Hence, if the anisotropy tends
to zero, rotation of the atomic moment is too slow and the Bloch wall will invade all the crystal.
Otherwise, the moments will rotate fast and the wall will be thin.
Several methods have been developed to observe magnetic domains and magnetization ori-
entation based on optic principles. These methods need an exceptionally clean surface and
free of any constraint. Technically, a light bleam interacts with the magnetic medium leading
to the rotation of light polarization plane (Kerr effect). Alves and Barrué [6] visualized on mi-
croscopic scale the magnetic domains in soft ferromagnetic materials. This gives information
about the permeability and the electromagnetic losses. Furthermore, the structure in domain
is influenced by many factors; first, annealing where the structure is affected by the cooling
speed, then the mechanical stresses that refine the domains, and finally the magnetic excita-
tions that affect the hysteresis cycle and different derived characteristics (permeability, iron
losses, remanent induction).

1.3 Magnetic modeling and behavior

1.3.1 Magnetic model
Differential equations of the scalar and vector potentials (A, ϕ) are derived from Maxw-
ell’s equations in order to model the magnetic process. This aims to determine the gradient of
the magnetic flux density B(, y, z, t) in the studied medium [7]. At frequencies encountered
in electrical machines, the system is supposed to be quasi-static, where the rate of change
of the electric flux density is negligible in front of the current density ( ∂D∂t � J). Since the
analytical resolution of Maxwell’s equations is often difficult, it is preferred to use numerical
methods. Arkkio [7] has developed a 2D finite element model for calculation of the potential A
and eventually the magnetic flux density B that equals ∇×A at each point of the medium. The
time-dependence of the problem is solved with a step-by-step time discretization using the
Crank-Nicholson method. As the solution is frequency dependant (B̃(, y, z,ω)), a frequence
domain approach can also be adopted with a Fourier transformation.

1.3.2 Magnetic behavior in soft magnetic materials
Magnetic modeling presented in section 1.3.1 cannot be possible without the knowledge of
the electromagnetic behavior of the ferromagnetic material. Hallal [8], Pellerey [9] and Rossi
and Le Besnerais [10] considered a linear relation between the magnetic flux density and
the magnetic field with a constant permeability where (B = μH). The non-linearity of the
permeability and its dependance with the magnetic field (μ(H)) has to be considered when
the applied magnetic field becomes less capable of magnetizing the material, the permeability
decreases in this case and a magnetic saturation can be observed when the magnetic field
reaches a certain level. In addition, hysteresis is an irreversible phenomenon that also affect
the non-linearity. Arkkio [7] has considered the non-linearity in this thesis and solved the
magnetic problem using the Newton-Raphson iterative method; in this case, the magnetic
behavior law of the material μ(H) must be well defined. In addition, the magnetic domains
and the walls movement presented in 1.2.2 have an important impact on the magnetization of
the material generating eddy currents around moving domain walls. The integration of these
effects considers different microscopic properties and modeling becomes more complicated;
an homogenized magnetization property Λ(B, ∂tB) is introduced to take into consideration the
microscopic phenomenon (Fig.1.1) [11]. This property is a contribution of different microscopic
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Fig. 1.1 1D scheme to introduce microscopic current and its consequence in terms of mesoscopic dy-
namic properties [12]

property and constitutes a transition between microscopic and mesoscopic scales and it is
expressed as follows:

Λ =

√√√ 1

2σϑJSnmS
(1.1)

where σ, JS, n, m and S are respectively the electrical conductivity, the saturation mag-
netic polarization, the walls volume density, the walls average mobility, the walls mean sur-
face.
The identification of the homogenized property is well carried out and discussed by Maloberti

et al. [12] with a 1D test case; a Gauss-Lorentz model which describes evolutions of walls pop-
ulation and mobility is then considered. The 1D model is adopted for the diffusion equation
solving through a cross section sheet of an Epstein frame. The assumptions are: unidirectional
and homogeneous surface excitation field (according to the depth of the sheet) [13]. Eq. 1.2
has to be solved giving a set of value of H varying in the thickness of the Epstein plate, and
with the time (H̃(z, ω)). The resuts are plotted in Fig.1.2.

Hence, a general diffusion equation is obtained:

∇ × (σ−1∇ × ((1 + σΛ2μ∂t .)HM)) + μ∂tHM = 0 (1.2)

where HM is the anhysteretic magnetic field.

1.4 Excitation forces

The identification of different forces occuring in electrical machines is necessary to understand
the vibro-acoustic phenomena. These forces are mainly the Maxwell forces and the magne-
tostrictive forces. Several methods have been developed for the determination of these forces.
Among these methods, the virtual work method is one precise method but it needs numerical
power for solving. This leads by discretization to the obtention of nodal forces that are later
on integrated in the mechanical model by coupling the magnetic problem with the mechanical
one. Finite element discretization and nodal forces derivation using the virtual work method is
explained in details by Belahcen [14].
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Fig. 1.2 Identification of the dynamic magnetic property Λ [12]

1.4.1 Magnetic forces
Magnetic force is the variation of magnetic energy when the medium is undergoing an incre-
mental displacement for specific magnetic excitation [15]. It can be expressed as:

F = − ∂

∂B2
(
∫ B

0
HdB)

∂B2

∂
− ∂

∂σ
(
∫ B

0
HdB)

∂σ

∂
(1.3)

The first term of Eq.1.3 considers the effect of flux density. The second term is omitted when
no mechanical stress is applied. This equation in the way it is expressed is valid in a volume
bounded by a surface where there is no permeability variation. In the case where the surface
is an interface between a material and air with different permeabilities, in addition to volumic
forces, surface forces are also considered at the interface between the material and air. Zhou
et al. [16, 17, 18, 19] derived a generalized magnetic forces expression, considering surface
and body forces using the derivation of the total magnetic energy with respect displacement;
the magnetic energy considers energy inside, accross and outside the volume. In the case of
vibration of ferromagnetic plates subjected to magnetic field, Wei et al. [1, 20, 21] presented
a modified magnetoelastic theory that considered magnetic surface traction forces generated
in opposite directions on the upper and the lower surfaces where permeability variation occurs
between air and the material. These two opposite surface forces create a couple as shown in
Fig. 1.3. The dependance of this couple on the transverse displacement affects the stiffness
of the material and eventually its natural frequency and it is shown that the increase in the
applied magnetic field increases the natural frequency (Fig. 1.4).
Maxwell forces are the origin of a combination of isotropic pressure and tension along the field

lines and they are derived from Lorentz forces. They are generally considered in the case of
existence of airgap enclosed by magnetic materials, like in a rotating machine or an inductor,
where a very high magnetic energy density is present and generates a highly concentrated
magnetic pressure in the airgap (Fig.1.7) [10]. In a rotating machine, radial and tangential
components are considered, seen that a closed surface is chosen as a cylinder integrated in
the airgap [14]. In the case of inductors, magnetic flux in the airgap is perpendicular to the
airgap and the Maxwell stress results in a magnetic pressure along  direction, leading to trac-
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Fig. 1.3 The equivalent force of magnetic traction on the plate [1]

Fig. 1.4 Frequency dependance on external magnetic field applied on a plate [1]

11



Delivrable 3.3
Magneto-mechanical dynamic modeling

tion/compression stress and in vertical vibration of the core of the transformer [10].

1.4.2 Magnetostrictive forces
Magnetostriction is a phenomenon present in magnetic materials where strain is caused in the
presence of the magnetic field. In microscopic point of view, it results from the interaction
between the magnetization direction and crystal lattices deformations where magnetoelastic
energy is generated [5]. Therefore, in the macroscopic scale, a strain tensor results when
a magnetic field is applied to a ferromagnetic material. A stress tensor can result from the
strain tensor generating mechanical forces and causing in many applications the vibration of
the structure.
The magnetostrictive strain tensor depends not only on the applied magnetic field, but also
on the stress distribution and orientation [22, 23, 24, 14, 25, 26]. An inverse phenomenon
also occurs, the Villari effect, where the magnetic properties change with mechanical stresses
applied on the body (Fig.1.5). The consideration of the inverse magnetostriction depends on
the problem; in vibration applications, low stress field is considered and the inverse effect can
be neglected [27].

Many studies have considered the magnetostriction effect and specially the importance of
the magnetostrictive forces on the vibration that occurs on magnetic materials in electrical
machines. First, the determination of the magnetostrictive strain coefficient λ in the direction
of the flux density is considered in order to obtain the strain tensor in arbitrary direction of
the magnetic flux density as shown in Eq.1.4 for isochoric magnetostriction [23], where the
transformation occurs with unchanged volume; this case is obtained for low and medium
magnetic field. On the other hand, at very high magnetic fields, volumic magnetostriction
occurs consisting of variation of volume [28].

ϵms =
λ

2B2
(3BBj − δjB2) (1.4)

From Eq. 1.4, when the flux density vector is directed along , the strain tensor becomes:


λ 0 0
0 − λ

2 0
0 0 − λ

2


 (1.5)

Magnetostriction in electrical steel laminations is widely accepted as an important source of
deformation and vibration in rotating machines and transformer cores. As mentioned before,
the main parameter to define is the magnetostrictive strain λ that depends on the magnetiza-
tion of the material. Delince et al. [28] and Kloos [29] give a linear relationship between the
strain and the magnetization depending on the strain and magnetization on saturation:

λ = λS
M

MS
(1.6)

where the indice S corresponds to the saturation.
This linear equation is adopted for modeling, but it doesn’t give accurate representation of the
magnetostrictive behavior; other references adopted a non-linear formula representing the
variation of the strain coefficient with the magnetic flux density [30, 16]. Others use experi-
mental measurements to model the magnetostrictive behavior; Belahcen [14] has calculated
the magnetostrictive forces using directly measured stress versus magnetic flux density and
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Fig. 1.5 Magnetostriction with external stress applied [14]

applied mechanical stress, using a modified Epstein frame. Results are plotted in Fig.1.5 show-
ing that magnetostriction depends on flux density and the mechanical stress present in the
structure. Another experimental approach that models this phenomenon is adopted; a model
based on Helmholtz free energy in which the strain tensor and the magnetic flux density
vector are the basic variables is developed [22, 24, 31]. Different parameters are identified
experimentally and are adopted as behavior parameters of the material: the Maxwell forces,
the magnetostriction, the magnetization M and the magnetic field H versus the magnetic flux
density. This method is not only applicable for magnetostrictive stresses, but it also expresses
the Maxwell stresses and the magnetic field as function of the flux density vector and the strain
tensor. Different functions are derived in details in the thesis of Fonteyn [31]. The limitation
of this method is that hysteresis is not included in the modeling; another approach has been
considered by Hilgert et al. [32], it uses neural networks to model hysteresis under sinusoidal
magnetization and it has shown that the inclusion of hysteresis in the magnetostriction model
has a significant impact on the calculated results for the vibration in the case of transformers
(Fig. 1.6).

1.4.3 Contribution of acting forces on vibration in electrical machines
Different studies on transfomers and electrical machines have been carried out to determine
the forces’ effects on the vibration of the structure. The contribution of the Maxwell forces
and magnetostriction has been carried out in vibration studies. In fact, Maxwell forces inside
the material are neglected, but Maxwell forces on the interface between air and the mate-
rial are important due to the high variation of magnetization between air and the magnetic
material [14]. Maxwell forces are specially effective with the presence of airgaps in electrical
machines. For transformers, where closed circuit is considered, the effect of Maxwell forces
compared with magnetostriction is neglected because no airgap is considered. Rossi and Le
Besnerais [10] have analyzed in the case of a inductor with airgap the cancellation effects of
the overall magnetic forces due to magnetostriction and Maxwell forces and have developed
a model to better understand how to compensate Maxwell and magnetostrictive forces and
reduce vibrations. They also showed that there is no general rule regarding the contribution
of magnetostriction and Maxwell forces. The contribution of each force on the vibration is pre-
sented in Fig.1.8. In the case of rotating machines, the Maxwell forces are mainly dominant in
the iron-air interface where rigid body displacements and elastic deformations of the structure
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Fig. 1.6 Magnetostriction representation (a)Without hysteresis consideration (b)With hysteresis consid-
eration [32]

Fig. 1.7 FE magnetic energy density distribution in a rotating motor showing the concentration of mag-
netic energy at the airgap between the stator and the rotor [9]
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Fig. 1.8 Contribution of magnetostriction and Maxwell forces in yoke deflection of inductor [10]

occur at the same time, as for magnetostriction, only deformation of the structure’s material
occurs. Pellerey [9] and Hallal [8] neglected the effect of magnetostriction on the vibration of
rotating machines in front of the Maxwell forces that were treated carefully.

1.5 Magneto-mechanical modeling

1.5.1 Mechanical vibration of materials
Energy coming from magnetic sources is integrated in the mechanical structure generating
rigid body motion and dynamic displacement inside the structure that leads to mechanical
vibration due to inertial and elastic properties characterizing the structure. Nowadays, solving
techniques are becoming standard due to the presence of a large variety of potential me-
chanical solvers that are used to model the vibrational behavior by deriving mass, damping
and stiffness matrices [8]. In the case where magnetic forces are the source of excitation
of the structure, the challenge appears in coupling the magnetic effect with the mechani-
cal response. The mechanical equation −ω2[M]U(ω) + ω[C]U(ω) + [K]U(ω) = F(ω) models
the Fourier transform input/output relationship between the exciting force F and the resut-
ing displacement U, where [M], [C] and [K] are the mass, damping and stiffness matrices
characterizing the material. Many studies focused on optimizing the mechanical displacement
response in order to minimize the noise generated in the machine [8, 9, 14, 10].

1.5.2 Magneto-Mechanical coupling
Coupling between magnetic and mechanical models is needed to link magnetic to mechanical
phenomena and it has been carefully considered in previous studied [33, 34]. Weak coupling
has been widely adopted; it considers only the effect that magnetic field has on the elastic
field through magnetic forces without affecting the properties of the material. On the other
hand, strong coupling, where the magnetic behavior is affected by mechanical stresses, can be
considered when magnetostriction is considered. Belahcen [14] integrated the magnetostric-
tion effect for both weak and strong coupling by considering the effect of mechanical stresses
on the magnetic behavior. For simpler problem and depending on the situation considered,
weak coupling is commonly used in vibrational analysis where stress generated is low enough
and do not affect the magnetic properties [8, 27, 10]. Different kinds of magneto-mechanical
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Fig. 1.9 Flowchart of different kinds of coupling [14]

couplings mentioned in litterature are illustrated in Fig.1.9. The coupling can be resumed by
the following form: �

S D
C K

��
A
u

�
=
�
J
F

�
(1.7)

A and u are respectively the magnetic potential and the structure displacement that charac-
terize the solution of magnetic and mechanical problems. For weak coupling, D = 0 and the
only coupling term C presents the magneto-mechanical connection and is replaced with the
electromagnetic force Fre where Fre = −CA.

1.6 Laser scribing

Laser have been extensively used for materials processing applications since their invention.
One of these is scribing of materials where only surface properties are modified. Laser scribing
refers to the removal of a thin layer of material from the surface [35]. The factors that are
affected the most are: size of grains, purity of the material, degree of refinement of the mag-
netic domains, surface tension and internal strains. Many studies have concentrated there
research on the effect that have each of these factors, specially domain refinement and wall
movement, on the core loss of the ferromagnetic material.
The enhancement of magnetic properties (hysteresis loss, total core loss, coercivity, rema-
nence, permeability and saturation induction) of 3% silicon steel laminations using three dif-
ferent lasers for scribing was studied by Patri et al. [35]. The improvement of the material’s
softness by the laser treatment is explained by three mechanisms: domain refinement, relax-
ation of internal stress and inhibition of domain wall movement. In fact, the high concentra-
tion of laser energy deforms plastically the substrate forming a localized zone of compressive
stress creating subdomains that tend to decrease the magnetoelastic energy and refine the
magnetic domain. This mechanism leads to breakage of bonds, internal stress relaxation and
domain wall movement during magnetizing and demagnetizing cycles, decreasing the total
core loss. The domain refinement concept has been illustrated by Kajiwara and Enokizono
[36] using a parametric study where iron loss decreases for transerve and rolling direction of
laser scratches. But when both scratches are applied simultaneously, the iron loss decreases
much more. Iron loss decrease is also improved by applying smaller pitches of laser scratches.
Different results collected by Kajiwara are displayed in Fig.1.10. Johnson et al. [37] revealed
the importance of laser surface scribing with optimum parameters (scribe speed, scribe spac-
ing, power and pulse frequency) on core losses reduction in amorphous metallic ribbons based
on domain refinement.
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Fig. 1.10 Comparison between case without laser and with laser for iron losses with diferent configura-
tions (a) TD (b) RD (c) TD + RD (d) irradiation pitch PL variation [36]

The influence of dotted lines produced by laser scribing on the domain structure and shape
of the hysteresis loops has been described by Zeleňáková et al. [38]. It was shown that the
hysteresis loop is steeper for samples with small density of dotted lines than for non-treated
samples. This is due to the fact that magnetic polarization vector rotates much narrower and
the number of movable domain walls is larger. For high density dots, a wavy hysteresis curve
is generated; the domain wall displacement and the rotation of the spontaneous magnetic
polarization vector happen simultaneously. Zeleňáková et al. also revealed the impact of laser
treatment on the coercivity that increases with the increase of the dots density. Different re-
sults are plotted in Fig.1.11.
As mentioned before, previous studies mainly focus on the importance of laser treatment on

magnetic losses and the improvement of softness in magnetic materials. Very few consider
the effect of lasers on the vibration and the noise behavior that is generated from magnetic
forces induced in the magnetic materials. This approach next to losses analysis, have been
considered by Lahn et al. [39] and have been studied on grain oriented electrical steel present
in three-phase transformer cores. The main source of transformer noise taken into account is
the magnetostriction; it gives a rough indication but it is not the final indicator of the behavior
of the real cores. Optimized laser parameters are generated so that the noise behavior is
improved by laser domain refinement as shown in Fig.1.12. Otherwise, non-optimal character-
istics will increase the magnetostriction and the generated noise.
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Fig. 1.11 Hysteresis loops of Finemet: a) Non-treated sample b) Laser treated sample with small density
dotted lines c) Laser treated sample with high density dotted lines [38]

Fig. 1.12 Calculated noise on basis of magnetostriction by considering laser domain refinement (DR)[39]
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1.7 Study orientation

The originality of the project is to model and eventually optimize mechanical vibration and
acoustic noise responses using laser surface texturizing technique while preserving high me-
chanical and thermal resistance. First, a magnetic modeling that considers magnetic domains
and walls movement is a needed to identify the magnetic flux density gradient through the
structure, including the magnetic dynamic property introduced by Maloberti et al. [11, 12, 40,
41]. Next, the determination and the identification of magnetic body and surface forces af-
fecting the vibrational behavior of the structure is carried out by considering magnetic forces
and magnetostriction, and taking into account the interaction between the structure and air
and the domains and the walls motion. The forces identification allows a magneto-mechanical
coupling and connects the magnetic model to the mechanical model. Then, a mechanical-
vibrational modeling has to be done to identify natural characteristics and vibrational response
resulting from magnetic forces excitation. Once the direct magneto-mechanical model is set,
the importance of laser scribing appears and a parametric study related to the effect of mag-
netic dynamic properties is presented in details permitting the optimisation of the scribing
versus the vibration and the noise generation. Different challenges occur: the knowledge of
the magnetic behavior laws of the chosen material by considering the accurate dynamic prop-
erty, the selection and the calculation of the magnetic forces, the experimental challenges and
the choice of test bench that is adapt the most with the model developed by choosing spe-
cific sensor and measurement equipments. All these challenges will let us select the optimal
properties that can be obtained by laser scribing with specific optimized laser parameters.
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Chapter 2

Theoretical study

2.1 Problem Setup

We consider a soft magnetic fixed plate subjected to a longitudinal magnetic field H repre-
sented in Figs. 2.1 and 2.2. This chapter aims to present a theorical approach of the equations
leading to the calculation of the vibration of this plate. First, to simplify the problem, different
assumptions have to be considered:

For mechanical modeling:
1- The material is homogeneous and linearly elastic; the mechanical problem is purely linear.
2- Isotropic material is considered with only mechanical properties E and ν.
3- Rayleigh damping model is adopted with α and β parameters.
4- The problem is reduced to two dimensions analysis in  and z directions.
5- For vibration analysis, small displacements are considered.
6- Geometric parameters are the thickness e and the length L of the plate; any variation in
the width will not be treated.
7- The plate is fixed: all displacement components are locally equal to zero at fixed points:
u( = 0, z, t) = 0.

For magnetic modeling:
8- A quasi-static problem where the electrical displacements of the beam are assumed to be
small compared with the conductive currents ( ∂D∂t � J).
9- The considered soft non-oriented material is magnetically isotropic and the magnetization
process occurs in the direction imposed by the applied magnetic field because there is no
dominant magnetization direction to the detriment of another.

Fig. 2.1 A soft ferromagnetic plate subjected to a longitudinal magnetic field
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Fig. 2.2 A 3D presentation of the ferromagnetic plate

10- The magnetic permeability μ and the dynamic magnetic property Λ are considered con-
stant and unique due to the isotropy.
11- The electrical conductivity σ is constant.
12- The only magnetic source is the longitudinal magnetic field applied on both surfaces
of the beam: this source is time dependent but it is uniform on the whole plate’s surface:
H(, z = ± e

2 , t) = H(t).
13- The magnetic field is generally dependent on the stress field applied on the material. In
this study, no pre-stress is applied and the generated stress from the vibrational problem is
neglected. The magnetic problem is independent from mechanical problem; a weak coupling
model will be adopted.

2.2 1D Magnetic problem formulation

The magnetic problem consists on defining the gradient of the magnetic flux density vector
B(, z, t) or of the magnetic potential vector A(, z, t) for every point in the material and at
every time. The magnetization of the structure is only possible if it exists a source of magneti-
zation. In this case, the considered source is an external magnetic field applied on the beam’s
surfaces in longitudinal direction with a uniform distribution as mentioned in assumption 12.
The magnetic problem is modeled using Maxwell equations presented below, considering as-
sumption 8:

rot E = − ∂B
∂t

(2.1)

rot H = J+ JS (2.2)

d B = 0 (2.3)

These equations combine magnetic and electrical variables. To solve this problem, the mag-
netic and electrical behaviors must be well defined. The current density and the electric field
are proportional (Eq. 2.5) as shown in assumption 11. The relation between the flux density
and the magnetic field is shown in Eq. 2.4.

H =
1

μm
B+ σΛ2

∂

∂t
B = (

1

μm
+ σΛ2

∂

∂t
)B (2.4)

J = σE (2.5)
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Eqs. 2.1, 2.2, 2.3, 2.4, 2.5 become:

σsB(s) =




∂2

∂z2
+ ∂2

∂y2
− ∂2
∂∂y − ∂2

∂∂z

− ∂2
∂∂y

∂2

∂2
+ ∂2

∂z2
− ∂2
∂y∂z

− ∂2
∂∂z − ∂2

∂y∂z
∂2

∂2
+ ∂2

∂y2


 (

1

μm
+ σΛ2s)B(s) = Δ((

1

μm
+ σΛ2s)B(s)) (2.6)

In this problem, considering assumtion 4 and the uniformity of the applied magnetic field in
assumption 12, Eq. 2.6 becomes:

σsB(z, s) =
∂2

∂z2
(
1

μm
+ σΛ2s)B(z, s)

B(±
e

2
, s) = B(s)

(2.7)

where B(s) =
μm

1+σΛ2μms
H(s)

The equation above can be solved analytically for a second order linear equation with
respect to z, or using the finite element technique in the z dimension.

Analytically, the solution is:

B(z, s) = B(s)[c1e
r

b
 z + c2e

−
r

b
 z] (2.8)

where  = 1 + μmσΛ2s and b = σμms.
For the finite element solving technique for 1D case, a quadratic element is considered, due

to the convergence power that it can reach. Returning to Eq. 2.7, by multipling the differential
equation by a test function (z), and by integrating through the thickness we get:

∫ e
2

− e
2

bB(z)(z)dz −
∫ e

2

− e
2


∂2B(z)

∂z2
(z)dz = 0 (2.9)

Using the part integration, we get:

∫ e
2

− e
2

bB(z)(z)dz +
∫ e

2

− e
2


∂B(z)

∂z

∂(z)

∂z
dz = 0 (2.10)

By transforming the physical coordinate z to local coordinates η with -1,1 boundaries for
quadratic element, we get:

∫ 1

−1
b

3∑

1

N(η)B̃(s)Nj(η)det(J)dη +
∫ 1

−1


3∑

1

∂N(η)

∂η

dη

dz
B̃(s)

∂Nj(η)

∂η

dη

dz
det(J)dη = 0 (2.11)

Using the FEM, the problem consists of solving a system of linear equations in the form:

[Kmg]B̃(s) = b(s) (2.12)

[Kmg] is the magnetic stiffness matrice and b(s) is the source, in this case it corresponds to
the boundary conditions applied on the surfaces of the beam and it can be expressed as:

b(s) =
�
B(s) 0 0 ... 0 0 B(s)

�T (2.13)

A magnetic flux profile function of z is obtained through the thickness of the beam.
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2.3 Mechanical modeling

2.3.1 Boundary Conditions
The boundary conditions of the fixed beam are considered as equality constraints to the free
vibration problem as follows

u( = 0, t) = 0 (2.14)

where u(, t) = [0,,ψ]T is the displacement vector at any point in the plane (, z) at
time t, with 3 displacement components: 2 linear and 1 angular: 0 is the mid-plane linear
displacement component along ,  is the linear displacement component along z, and ψ is
the angular displacement component about y axis and through the z plane.

2.3.2 Energy formulation
One of the most used and most practical approaches used in magneto-mechanical coupling
is the energy approach. Using Hamilton’s principle, an energy conservation formulation is
obtained:

∑ ∂

∂u
= 0 (2.15)

Strain Energy K

The strain vector of the beam ε is expressed as follows,

εT =
�
ϵ0 κ γz

�
(2.16)

Where ϵ0 is the axial strain component along  axis, κ is the twisting strain component
through z plane and about y axis, and γz is the shear strain component along the plane
(z). The strain vector is related to the displacement vector defined in Eq. 2.16 as follows,

ε =



ϵ0
κ0
γz


 =




∂
∂ 0 0
0 0 ∂

∂
0 ∂

∂ 1





0


ψ


 = [B]u (2.17)

We define the following stiffness matrix,

[C] =



A11 B11 0
B11 D11 0
0 0 A44


 (2.18)

Where the constants (Ajk , Bjk , Djk) are defined as

(Ajk , Bjk , Djk) =
n∑

m=1

∫ zm

zm−1
Qm
jk (1, z, z

2)dz j, k = 1,2,6 (2.19)

Ajk =
n∑

m=1

∫ zm

zm−1
KQm

jkdz j, k = 4,5andK =
5

6
(2.20)

where

[Q] =
E

1 − υ2



1 υ 0
υ 1 0
0 0 1−υ

2


 (2.21)
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Hence, the strain energy of the beam is expressed as follows:

K =
1

2
bm

∫ L

0
uT [B]

T [C][B]ud (2.22)

And the variation of the strain energy with respect to the displacement becomes

∂K

∂u
= bm

∫ L

0
[B]

T [C][B]ud (2.23)

Kinetic Energy M

Including the inertia effect, the mass moment of inertia of half of the beam segment about
each end shall be computed and included at the diagonal locations corresponding to the rota-
tional degrees of freedom. The kinetic energy of a beam is expressed as follows:

M =
1

2
ρbm

∫ L

0
[e(̇2 + ̇2) +

e3

12
ψ̇

2
]d (2.24)

M =
1

2
ρbm

∫ L

0

�
̇ ̇ ψ̇

�


e 0 0
0 e 0

0 0 e3
12





̇
̇
ψ̇


d = 1

2
ρbm

∫ L

0
u̇T [m]u̇d (2.25)

∂M

∂u
= ρbm

∫ L

0
[m]üd (2.26)

2.3.3 Finite element discretization
The problem described in the continuous domain is now discretized; the system is divided
into isoparametric, 3-noded quadratic elements with first order shear deformation for each
beam, using the finite element method (FEM), by transforming the physical coordinate () into
local coordinate (ξ). Shape functions developed for 3-noded quadratic elements are used to
discretize the domain. Hence, a variable  can be expressed using the nodal relationship.

 =
3∑

k=1

Nkk (2.27)

where k is the variable’s value at node k. Hence, the nodal relationship is applied to the
displacement components as follows, 0 =

∑3
k=1Nk

0
k ,  =

∑3
k=1Nkk, ψ =

∑3
k=1Nkψk.

Then, adopting the Gaussian quadrature formulas, mass and stiffness matrices can be derived
for each element. Later, the global mass and stiffness matrices shall be obtained by assem-
bling the elementary matrices with respect to the nodes displacement components, in order
to calculate the natural frequencies corresponding to each mode in the discretized domain.

24



Delivrable 3.3
Magneto-mechanical dynamic modeling

Beam Stiffness Matrix

To derive the stiffness matrix, one must first adopt the Gaussian quadrature formula by ex-
pressing the potential energy in the following form

K =
1

2
uT [K]u (2.28)

Then, using the nodal displacement relationship in Eq. 2.27 applied on strain-displacement
relation in Eq. 2.17, Eq. 2.23 is discretized as follows

K =
1

2
T

�
bm

∫ 1

−1
[Bξ]

T [C][Bξ][ J]dξ

�
 (2.29)

Where J is the Jacobian matrix which is used to transform the physical coordinate () to
the curvilinear coordinate (ξ) and [B] is constructed using the shape functions for 3-nodes
quadratic element. Hence, the stiffness matrix of the beam can be expressed as,

[K] = bm

∫ 1

−1
[Bξ]

T [C][Bξ]det[ J]dξ (2.30)

Beam Mass Matrix

To derive the mass matrix, we must also adopt the Gaussian quadrature formula by expressing
the kinetic energy expressed in Eq.2.25 in the following form

M =
1

2
u̇T [M]u̇ (2.31)

Thus, using the Gaussian quadrature formula Eq.2.31 in Eq. 2.25 and including the inertia
effect, we get

[M] = ρbm

∫ 1

−1
[F]T [m][F]det[ J]dξ (2.32)

Where [F] is a matrix function of the shape functions and

[m] =



e 0 0
0 e 0

0 0 e3
12


 (2.33)

Assembly

Once the elementary mass and stiffness matrices are set for each element, their assembly
will be made in global mass and stiffness matrices in order to take into consideration the
whole displacements nodes in the structure. The assembly technique consists on combining
all the elements contributions and considering the commun nodes between two consecutive
elements.
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2.3.4 Eigen problem resolution
Once the global symmetric mass and stiffness matrices are obtained, where [K] is positive
semi definite and [M] is positive definite, the following Eigen-equation corresponding to the
free vibration problem can be solved for determining the natural frequencies ω and the eigen-
vectors ϕ that corresponds to the mode shapes.

(−ω2 [M] + [K]){ϕ} = 0 (2.34)

The modes classification corresponds to the natural frequencies obtained in ascending order,
from the lowest to the highest. The number of natural frequencies depends on the mesh size,
and it is equal to the degree of freedom of the system. But the frequencies analyzed are the
ones corresponding to the first 10 modes classified from the lowest (fundamental) to the high-
est.

2.4 Dynamic approach

2.4.1 Dynamic flexibility matrix
Using Hamilton’s principle in Eq. 2.15, the general form of motion modeling the vibrational
behavior of the beam or any mechanical structure, considering the inertia, elastic, damping
and external force acting on the structure with a finite number n degree of freedom is:

[M]ü(t) + [C]u̇(t) + [K]u(t) = f (t) (2.35)

Here, the mass matrix [M] and the stiffness matrix [K] are derived from the eigen problem.
The damping matrix [C] represents the different dissipations in the structure. A simple repre-
sentation of these losses is given by a Rayleigh damping assumption:

[C] = α[M] + β[K] (2.36)

The coefficients α and β are selected to fit to the response of the structure. Eq. can be written
using the laplace transform:

G(s)F(s) = U(s) = ([M]s2 + [C]s + [K])−1F(s) (2.37)

A transfer function G(s) matrix connecting the external forces to the structure displacement
vector is generated. It resumes the whole vibration process at each node of the structure. The
element , j of G(s) give the impact of th force on the jth displacement component. G(s) is also
known as the dynamic flexibility matrix.

2.4.2 Modal decomposition
The determination of G(s) as expressed in Eq. 2.37 takes a very large resolution time and
becomes almost impossible when the degree of freedom increases. Hence, a modal decom-
position is developed and aims to express the transfer function with the eigenvalues and the
eigenvectors derived from the eigenproblem. Let us perform a change of variables from phys-
ical coordinates  to modal coordinates  [42]:

u = Φv (2.38)

Substituting in Eq. 2.35 we get:

ΦT [M]Φv̈ + ΦT [C]Φv̇ + ΦT [K]Φv = ΦTf (2.39)
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The obtained matrices ΦT [M] , ΦT [C]Φ and ΦT [K]Φ are diagonal and can be derived using
Eq. 2.34.

ΦT
j [K]Φ = ω2 ΦT

j [K]Φ (2.40)

ΦT
 [K]Φj = ω2j ΦT

 [K]Φj (2.41)

Substracting Eq. 2.41 from 2.40, and considering that [K] and [M] are symetric, we get:

(ω2 − ω2j )ΦT
j [M]Φ = 0 (2.42)

This equation gives the following:

ΦT
j [M]Φ = 0 when ω 6= ωj (2.43)

This leads to the following:
ΦT [M]Φ = dg(μ) (2.44)

ΦT [K]Φ = dg(μω2 ) (2.45)

ΦT [C]Φ = dg(2ξμω) (2.46)

where

ξ =
1

2
(
α

ω
+ βω) (2.47)

Returning to the modal decomposition, Eq. 2.39 can be written as:

v̈ + 2ξΩv̇ + Ω2v = μ−1 ΦTf (2.48)

with the notations:

ξ = dg(ξ)
Ω = dg(ω)
μ = dg(μ)

(2.49)

From Eq. 2.48 one can express the dynamic flexibility derived in Eq. 2.37 as follows:

[G(s)]F(s) = U(s) = ΦV(s) = Φdg{
1

μ(s2 + 2ξωs + ω2
)}ΦTF(s) (2.50)

The expansion of this equation gives the following:

[G(s)] =
n∑

1

ΦΦ
T


μ(s2 + 2ξωs + ω2 )
(2.51)

The vibrational response vector U(s) can be now determined once the excitation vector
F(s) is known; the results for any component of vector U(s) can be illustrated using bode dia-
gram.
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2.5 Forces acting on the structure

One main challenge of the study is to identify the excitation vector at each node. Let us return
to the energy concept to formulate the energy resulting applied forces. The mechanical fields
in a volume Ω with boundary S are expressed as follows [43]:

Ω = −
∫

Ω

∫

u

fTΩδudΩ (2.52)

S = −
∫

S

∫

u

n.fTS δudS (2.53)

Eqs. 2.52 and 2.53 correspond to body and surface forces respectively. These forces have
there origin from different sources: mechanical forces and moments, thermal forces, electro-
magnetic forces. In this study, only electromagnetic forces are considered and their effect on
the vibrational response is well carried out.

2.5.1 Origin of electromagnetic forces
Kloos et al. [29] has revealed the macroscopic magnetic forces acting on mechanical struc-
tures. The main forces are the Lorentz force and the magnetostrictive force. Other forces
resulting from the non-colinearity between the magnetic field, the magnetic flux density and
the forces resulting from the inhomogenities in the magnetic permeability are also explained.
Before we derive an explicit form of the acting forces, we will present the total magnetic
stresses that define these forces. They are expressed in a tensor as:

[σ] = [T] + [σms] (2.54)

where [T] is the Maxwell tensor derived from the Lorentz force, and [σms] is the magnetostric-
tion stress tensor. The total force resulting from the stresses is the sum of electromagnetic
(Maxwell) and magnetostrictive forces:

f = d[σ] = fem + fms (2.55)

2.5.2 Generalized Magnetic Forces Expression for a constant surface mag-
netic field

The Maxwell forces acting on the structure are explained. The functional of the energy of the
magnetoelastic interaction for the deformable magnetic medium, taking into consideration
the presence of the air interface, for a uniform time-independent magnetic field applied on
surface of the sample, can be written as [16]

em =
∫

Ω+ (u)

∫ B+

0
H+dB+dΩ+ +

1

2

∫

Ω− (u)
μ0(H−)2dΩ− (2.56)

Superscripts + and − correspond respectively to the beam and air media. Considering the
interface conditions of magnetic field in boundary S:

B+n = B
−
n , H

+
τ = H

−
τ (2.57)

(H+)2 = (H+n )
2 + (H+τ )

2, (H−)2 = (H−n )
2 + (H−τ )

2 (2.58)

The magnetic force F acting on the body and the surface of the structure is the change rate of
the magnetic energy with respect to the structure displacement when the magnetic medium
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is undergoing an incremental displacement with the magnetic excitation held fixed, and it can
be expressed as follows:

F T = − δ
em

δu
(2.59)

We will calculate the variation of the total magnetic energy to displacement:

δuem{u} =

�∫

Ω+ (u+δu)
−
∫

Ω+ (u)

�∫ B+

0
H+dB+d

+
1

2

�∫

Ω− (u+δu)
−
∫

Ω− (u)

�
μ0(H−)2d

(2.60)

δuem{u} =
∫

S



∫ B+

0
H+dB+ − 1

2
μ0(H−)2


n+ .δudS (2.61)

δuem{u} =
∫

S



∫ B+

0
H+dB+ − 1

2
μ0[
(μm)2

μ20
(H+n )

2 + (H+τ )
2]


n+ .δudS (2.62)

δuem{u} = −
∫

Ω+
∇[

μ2m
2μ0

(H+)2 −
∫ B+

0
H+dB+]δud

−
∫

S
[− 1

2μ0
((μm)2 − μ20)(H+τ )2]n+δudS

(2.63)

Using Gauss integral formula, Zhou et al. [16] have deduced volume and surface magnetic
forces:

femΩ = ∇[
μ2m
2μ0

(H+)2 −
∫ B+

0
H+dB+] (2.64)

femS = [− 1

2μ0
(μ2m − μ20)(H+τ )2]n+ (2.65)

Both volume and surface forces can be reformulated as one equivalent force surface force
using Eq. 2.62; the distribution of the volume force through the thickness will be considered
in the incoming studies:

f
eq
S =


1
2
μ0[

μ2m
μ20
(H+n )

2 + (H+τ )
2] −

∫ H+

0
B+dH+


n+ (2.66)

The equivalent surface force expressed in Eq. 2.66 is normal to both surfaces of the plate.
When the plate vibrates with small deformation, the normal surface vector n+ forms an angle
θ with the z-axis. Hence, the equivalent surface force feqS can be projected on the  and z
axis. The forces projections on the upper and the lower surfaces of the plate are illustrated in
details in Fig. 2.68. Its is shown that the forces in -direction and z-direction are equal and in
opposite direction. The z-direction forces generate a normal stress σz that is neglected in the
theory of plates due to the low thickness of the plate in front of the width and the length. On
the other side, the -forces create a mechanical moment expressed as:

Mem
 = ƒeqSe (2.67)
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Fig. 2.3 The presentation of the projected total magnetic surface force

Mem
 =


1
2
μ0[
(μm)2

μ20
(H+n )

2 + (H+τ )
2] −

∫ B+

0
H+dB+


eψ (2.68)

Based on displacement-dependent moment, one can find new natural frequencies of the mag-
netic structure with specific magnetic field applied on both surfaces of the plate.

2.5.3 Magnetostrictive forces
Magnetostriction is the process where a deformation of the material is obtained when sub-
jected to a magnetic field. When the material is blocked, magnetostriction generated stress
and a force will be applied on the material leading to vibration. Magnetostriction is charac-
terized by a magnetostrictive strain vector λ. For the case of the beam, this vector is only
directed with  axis, knowing that the strain in z axis is neglected λT = (λ,0,0). it can be
related with the induced stress by:

σms = −[Q]λ (2.69)

The strain energy resulting from the magnetostriction is [30]:

δms = −
∫

A



Nλ
Mλ
0



T

δεdA (2.70)

where

Nλ =
∫ e

2

− e
2

[Q]λdz (2.71)

Mλ =
∫ e

2

− e
2

[Q]λzdz (2.72)
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By deriving Eq. 2.70 with respect to the displacement, we obtain a magnetostriction force
vector:

Fms = bm

∫ L

0
[B]



Nλ
Mλ
0


det(J)dξ (2.73)
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Chapter 3

Applications and simulations

3.1 Introduction

In this chapter, we will discuss the numerical results obtained from simple applications of the
theories developed in the previous chapter. First, an electromagnetic modeling is treated,
where a magnetic flux density distribution in the structure is obtained, depending on differ-
ent geometric and magnetic parameters; a special attention will focus on the effect of the
dymanic magnetic property considered by Maloberti et al. [11]. Next, a modal analysis is
developed, giving the natural frequencies of vibration of the concerned structure. Then, the
implementation of the longitudinal magnetic field on the surface will be caried out in order to
find its effect on the variation of the natural frequencies.

3.2 Geometric, Magnetic, Mechanical properties

Let us consider a fixed beam subjected to uniform longitudinal applied magnetic field H on
both surfaces. We consider the different assumption presented in the previous chapter. Tables
3.1 presents the basic geometric, mechanical and magnetic properties that correspond to the
studied case and the results obtained later.

Properties Symbol Value
Young’s Modulus (GP) E 200

Poisson Ratio υ 0.3
Density (Kg/m3) ρ 7850
Thickness (mm) e 0.5

Length (mm) L 100
Electrical conductivity (S/m) σ 2 × 106

Relative permeability μr 1000
Dynamic property (μm) Λ 50

Applied magnetic field (A/m) H 1000

Table 3.1 Beam’s properties
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Fig. 3.1 Bode diagram of magnetic flux density distribution in the thickness of the plate with Λ = 100μm

Fig. 3.2 Bode diagram of magnetic flux density variation with different dynamic properties at the surface
of the plate
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Fig. 3.3 Variation of the magnetic flux density with the thickness of the plate, depending on the magne-
tization dynamic property Λ at 2000Hz

3.3 Magnetic Modeling

The goal of the magnetic modeling is to obtain a distribution of the magnetic flux density in
the whole structure. In this case, a longitudinal magnetic field is applied in a uniform way on
the surface and though the length of the beam; the only variation of the magnetic flux density
happens in the thickness of the beam and is oriented through  axis. The obtained results give
a frequency dependance of the flux density. Fig. 3.1 shows the variation of the flux density
through the thickness of the plate using a bode diagram illustration. The results show that the
magnetic flux density has its maximum on the surfaces where the magnetic field is applied
and decreases through the thickness. The same interpretation can be obtained with the result
shown in Fig. 3.3 that illustrates the magnetic flux density variation with the thickness of the
plate for a frequency of 2000Hz.
The impact of the dynamic magnetization property Λ is also revealed. Fig. 3.2 illustrates the
effect that this factor has on the frequency response of the magnetic flux density and Fig. 3.3
shows the impact of Λ on the flux density through the thickness with an excitation frequency
of 2000Hz. It is shown that the magnetic flux density gradient decreases with the increase of
Λ. In fact, for smaller magnetic domains, the loss in the magnetic flux density decreases.
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3.4 Magneto-Mechanical modeling including the surface mag-
netic forces

Mechanical study involving a modal analysis applied on the structure is considered using a
1D finite element method. The implementation of derived matrices is obtained using Matlab
based on the parameters presented in Table 3.1. Natural frequencies of vibration are resumed
and compared in Table 3.2. Two columns of frequencies are obtained: one corresponds to the
natural frequencies without any applied magnetic field, and one corresponds to the case where
magnetic field H is applied. It is shown that the frequency increases when the magnetic field
is applied. This is well explained in Eq. 2.68, where the addition of displacement-dependent
force will increase the stiffness and the natural frequency, due to the application of a mag-
netic surface traction force that depends on the deformation of the structure. The effect of the
dynamic magnetic property Λ is not considered yet; it will be carefully treated later where a de-
tailed vibrational response is studied and different vibration characteristics will be optimised.

H(A/m) 0 1000
Mode Frequency (Hz)

1 42.75 48.29
2 268.51 303.04
3 754.48 851.29
4 1486.13 1676.19
5 2473.28 2788.23
6 3725.58 4197.5
7 5255.63 5917.17
8 7078.97 7963.46
9 9214.37 10355.97

10 11683.95 13117.78

Table 3.2 Natural frequencies derived from modal analysis

3.4.1 Comparison with previous studies
This section presents a comparison with the calculation made using a MATLAB simulation
concerning the surface traction force effect on the vibration with previous results obtained
by Wei et al. [1] and Takagi et al. [2]. The comparison is based on the variation of the
fondamental natural frequency of the plate with the applied magnetic flux density. Different
mechanical, geometric and magnetic properties adopted are resumed in Table 3.3 and results
are plotted in Fig. 3.4. From the comparison of the observed results in Fig. 3.4, we can

Properties Symbol Value
Young’s Modulus (GP) E 200

Poisson Ratio υ 0.3
Density (Kg/m3) ρ 7850
Thickness (mm) e 0.5

Length (mm) L 100
Relative permeability μr 16

Table 3.3 Different properties adopted by Wei et al. [1] and Takagi et al. [2]

notice that the curve generated by the model developed in this paper is convex. In fact, from
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Fig. 3.4 Natural frequency variation with the applied magnetic density results

assumption 10, considering that the magnetic permeability μm is constant, we can deduce
that the fondamental natural frequency increases with the square of the magnetic flux density
and the applied magnetic field. Once the assumption 10 is omitted and the dependence of
the magnetic permeability with the flux density is considered, the convexity of the curve will
decrease, tending to look like the experimental curve obtained by Takagi et al. [1].

3.5 Incoming studies

In the incoming studies, we will first work on improving the primary model; the variation of the
magnetic permeability with the flux density must be taken into account. On the other hand,
the distribution of the volume forces through the thickness will be carried out.
Based on the state of art and on the primary generated calculations and simulations, we will
next focus on the importance of the homogenized dynamic magnetic property Λ on the natural
frequencies of vibration, and on the vibration response of the magnetic structure by incorpo-
rating the effect of magnetostrictive forces acting on the body of the structure and by taking
into consideration the effect of Λ on the magnetostriction. The importance of this study is to
determine in theoretical point of view an optimal presentation of the gradient and the period-
icity of Λ that optimizes the vibrational characteristics of the studied system and help to select
of the best laser treatment adequate for the optimization.
Once the optimizing procedure is well set and defined, we will focus on a more general study
where μm and Λ are not constant and vary with the magnetization of the material; more pow-
erful numerical programs shall be developed with specific numerical methods of resolution,
either by programming on MATLAB or by the help of engineering software ALTAIR.
On the other hand, experimental studies will be performed where specimens with different
laser treatments and different geometries are presented. Mechanical tests and measurements
shall be obtained to analyse the vibrational response of the different specimens. Experimental
study is a must to verify and validate theory and numerical simulations, and is a powerful tool
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to help in the decision of optimal laser treatment.
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