Investigating laser patterns for GOES submitted to misoriented flux with a 2D vector model.
 O. Malobertiab ${ }^{\text {ab, }}$, T. Boucheneza ${ }^{\text {a }}$, T. Etifierer , E. Sallouma ${ }^{\text {a }}$, J. Dupuis ${ }^{\text {c }}$, J. Bleumers ${ }^{\text {d }}$, P. Dupont ${ }^{\text {e }}$, S. Panier ${ }^{\text {b }}$, J. Fortin ${ }^{\text {a,b }}$
 ${ }^{a}$ SYMADE-UniLaSalle Amiens, 14 Quai de la Somme, Amiens, 80080, France; ${ }^{\text {b Laboratoire LTI, IUT }}$
 d'Amiens Avenue des Facultés - Le Bailly, Amiens, 80025, France; 'Multitel a.s.b.l., 2 Rue Pierre et Marie
 Curie Parc Initialis, Mons, 7000, Belgique; ${ }^{\text {E EREA Energy Engineering bv, Ruggeveldstraat 1, B-2110 }}$
 Wijnegem, Belgium; 'JEUMONT Electric, 367 rue de l'industrie, Jeumont, 59460, France

Introduction: Inductors and transformers with rectangular, U or E shaped magnetic cores have got corners or columns where the flux makes an angle with the Rolling Direction (RD). Any misoriented flux in a GOES significantly increases the losses by a factor from 2 to 5 . This work contributes to the research on the ability of laser treatments to be locally compatible with misoriented flux inside electrical steels.

Conclusion: This ambition to control the loss reduction factors within misoriented flux requires to provide a vectorial description of the magnetic behaviour in 2D, able to predict the losses in any direction, and sensitive to the effect of a laser treatment in relationship with the magnetic domain structure.

