Relative control of domains structure and phases in electrical steels by laser process parameters and patterns

LaSalle Amiens

O. Maloberti^{1,2}, M. Nesser¹, T. Etifier^{1,2}, J. Dupuy³, P. Dassonvalle^{1,4}, C. Pineau⁵, S. Panier², J. Fortin^{1,2}, J-P. Birat⁶

¹SYMADE-UNILASALLE Amiens, 14 quai de la Somme, 80080 Amiens, France; ²LTI Laboratory, IUT d'Amiens, Avenue des Facultés - Le Bailly 80 025 Amiens, France; ³MULTITEL, 2 rue Pierre et Marie Curie, 7000 Mons, Belgique; ⁴MIS Laboratory, UPJV, 14 quai de la Somme, 80080 Amiens, France; ⁵IRT-M2P, 4 rue Augustin Fresnel, 57070 Metz; ⁶IF-steelman, 5 rue du gate chaux, 57280 Semecourt, France.

Introduction: This work investigates the impact of surface Ultra-Short-Pulsed-Laser ablation process (USPL); mainly the groove depth (*p*), Laser Induced Shock Wave (LISW) pressure (\acute{P}) and line spacing (*d*); on magnetic characteristics of Grain-Oriented Electrical Steels (GOES) by using an average dynamic μ - v_c - Λ model [1] and the Tensor Magnetic Phase Theory (*TMPT*) [2]. Measurements and observations are performed with the Single Sheet Tester (SST) and the Magneto-Optical Indicator Film (MOIF) technique. The analysis helps specifying the process thanks to a relative control of the magnetic structure and its dynamic properties.

Impact of Groove Depth × LISW pressure $(p \times \dot{P})$

The inclusion of located laser spots – lines, that leads to : a reduction of polarization inside the affected zone (**p** ⇒ μ, κ) / an increase of pinning – nucleation processes at defects (**p** ⇒ ν_c).
The induction of located closure domains or magnetic poles that define width of magnetic domains, multiplication and mobility of walls driven by the total energy minimization (**d** ⇒ Λ, η, τ).

*: olivier.maloberti@unilasalle.fr / olivie.maloberti@gmail.com; [1] Maloberti O. et al., JMMM, vol. 304, issue 2, Sept. 2006, Pages e507-e509; [2] Maloberti O. et al., JMMM, vol. 502, (2020), 166403 The project ESSIAL received funding from the European Research Council under the European Union's H2020-IND-CE-2016-17/H2020-FOF-2017 Program (Grant Agreement No. 766437). Matériaux Métallu