

MAGNETISM AND MAGNETIC MATERIALS CONFERENCE

A Description of Laser Impacts on Magnetic Properties of GO Electrical Steels Under Surface Treatment With Short and Ultra-Short Pulses

M. Nesser¹, O. Maloberti^{1, 2}, E. Salloum¹, J. Dupuy³, J-P. Birat⁴, C. Pineau⁴, S. Panier¹, J. Fortin^{1, 2}, P. Dassonvalle^{2,5}

¹ LTI Laboratory, Avenue des Facultés - Le Bailly, Amiens, FR 80025 , ²ESIEE-Amiens, 14 quai de la Somme, Amiens, FR 80082 ³Multitel a.s.b.l, Parc Initialis, Mons, BE 7000, ⁴IRT-M2P, 4 rue Augustin Fresnel, Metz, FR 57070, ⁵MIS Laboratory, 14 quai de la Somme, Amiens, FR 80082

1. Aim

Loss reduction up to 20% and apparent permeability improvement
Correlations between the laser energetic quantities, laser impact and the identified magnetic properties
Impact of laser on microscopic magnetic structure

2. Laser Treatment and Material

RD	IPG pulsed Ytterbium fiber:	Grain-Orien	ted Fe-(3wt%)Si			Peak power	Energy	Cumulative	
Laser tracing Line	Scribing short pulse laser (1.064µm) Ablation ultra-short pulse laser(1.030µm)	Name	GO 23MOH		Configuration	density (MW/cm^2)	density (I/cm^2)	energy density (I/cm^2)	Туре
		Coating	2.3 µm		Scr_A	127.32	0.50	509.296	Scribing
		Thickness	0.23 <i>mm</i>		Scr_B	38.19	3.81	15.279	Scribing
		Size	Square(150mm)		Abl_A	23.4 <i>e</i> ⁶	11.71	1171.38	Ablation
		Density	7.38 g/cm ³		Abl_B	10.1 <i>e</i> ⁶	5.09	50.92	Ablation

3. Total Power Loss and Apparent Permeability Variation measured with "SST"

4. Modeling

Scribing

Linear Thermal Equation:

$$\partial_t \Delta T + \Delta T = q/G$$

G thermal conductivity coefficient, C:heat capacity coefficient, q: laser heat flux

Induced Thermal Stress:

 $\sigma_{th} = (\alpha_i \, \Delta T_i - \alpha_m \, \Delta T_m) \, E$

Thermal expansion coefficient of SiFe (α_m) and of the insulating coating (α_i), Metal temperature (ΔT_m) and coating temperature variation (ΔT_i), *E*: Young modulus

Ablation

Based on the two Temperature Model:

 $L \approx \alpha^{-1} \cdot \ln \left(\frac{F_a}{F_{th}}\right)$

L: groove depth, α : optical penetration depth, F_a : laser fluence

 F_{th} : threshold fluence for ablation

Bertotti's Model: Loss separation								
$P = P^{(hys)}$	(t) + $P^{(class)}$	+ $P^{(exc)}$						
$=k_h f B_m^2$	$+ k_c f^2 B_m^2$	$+ k_e f^{\frac{3}{2}} B_m^{\frac{3}{2}}$						

5. Correlations

